CUBESAT CONSTELLATION TO ANALYZE THE EFFECTS OF EARTH'S MAGNETIC TAIL ON THE MOON

MAGNETA-CUBE

ission dea Contest

TEAM MEMBERS

Aidy Carolina Flores Ortega

Rigoberto Reyes Morales

Alessandro Ortega Terrazas

Jonathan Gadiel Ramírez Martínez

CONTENT

- 1. Need
- 2. Objectives
- 3. Orbit/constellation description
- 4. Key performance parameters
- 5. Concept of operations
- 6. Space segment description
- 7. Implementation plan

There are still some problems that could occur that have not been well studied regarding to moon exploration, such as those related to Earth's magnetic tail. This issues can have consequences ranging from lunar 'dust storms' to electrostatic discharges.

The study of this phenomenon is important, since the moving clouds of lunar dust (or regolith), could affect the machinery, instruments, or habitats installed on the moon.

LINE

NEGATIVELY CHARGED NIGHTSIDE

TERMINATOR POSITIVELY CHARGED DAYSIDE

LUNAR DUST STORM

3

Also, electrons accumulate and surface voltages can be hundreds or thousands of volts. So astronauts walking on the surface and accumulating a load of excess charge by touching another astronaute, instrument, etc. Could produce an unwelcome discharge.

Requirement: Study the variation of the remanent electromagnetic field in a range from from 6 nT to 313 nT. And the movement of lunar dust clouds of at least 14 meters in size.

Where? at the south pole of the Moon in an area of about 25,000 km2 When? when the moon encounters the "magnetic tail" of the Earth.

Credit: NASA/GSFC/Arizona State University

Requirement: Take measurements of both hydrogen and oxygen ions during each day of the magnetotail phase to see if there are variations in the intensity of ion transfer with respect to the course of days within the magnetotail.

Where? In the selected orbit

When? when the moon encounters the "magnetic tail" of the Earth.

ORBIT/CONSTELLATION DESCRIPTION

- Type: Circular low lunar orbit
- Altitude: 100 km
- Three CubeSats of 6U placed every 120°
- Orbital period: 2 hours
- Inclination: 86°
- Alex S. Konopliv, planetary scientist at NASA's Jet Propulsion Laboratory

Orbit description of the constellation (elaborated in STK)

KEY PERFORMANCE PARAMETERS

To take imagery (8-bit or 16-bit) from an altitude of 100 km with a 10 m GSD Make measurements in orbit looking for H and O ions, every 10 minutes, making it for 12 measurements every 120 minutes (orbital period)

To make measurements in a range from 6 nT to 313 nT with a resolution of at least 8 nT.

CONCEPT OF OPERATION

LUNAR PATHFINDER will be used as data relay satellite

Image and data transmission Band-S

and and a second a s

UHF frecuency Transmission and reception of telemetry

Band-X

The ground station receives data and images from the satellite

Information sent to the research centers for analysis

Data processing

Satellite receives data and commands from the ground station

GROUND SEGMENT

ESA ground station located around the earth

CubeSat constellation located in a ~100km polar orbit

Satellites scan moon's south pole during magnetic tail phase

The spacecraft will take several orbits before reaching its destination

SPACE SEGMENT DESCRIPTION

Component	Notes	CUSTOM/COTS	Mass	Physical Size
CubeSat 6U Platform (ADCS, EPS, Solar Panels, Computer, Reaction Wheels, C&DH, Propulsion System)	M6P NanoAvionics	COTS	Empty Bus: 4 500 g / 5 500 g	Payload volumen: Up to 4U
Mass spectrometer	Mini-INMS	COTS	600 g	1.6U
Optical sensor	Chameleon Imager Dragonfly Aerospace	COTS	1.6 Kg	2U
FG Magnetometer	-	CUSTOM	-	-

1. CubeSat Platform
2. Mass Spectrometer
3. Optical Sensor
4. Magnetometer FG

9

Payload Subsystem

	INMS	Requirements
Volume	13.5cm x 9cm x 9cm	Within available payload space
Power	1.8W (Ions+Neutrals), 1.3W (ions only)	_
Mass	600 gr	Within CubeSat standards for 6U
Data (Raw data, no compression)	1.3kbps (1s sampling)	-
Electrical Interface	±5V, +3.3V, +12v, LVDS and SPI serial communication	-

CHAMELEON IMAGER (by Dragonfly aerospace)

	Optical Sensor	Requirements
Spatial Resolution	10 m	10 m
Swath at 500 km	40 km	40 km
Mass	1.6 Kg	Within CubeSat standards for 6U
Physical size	20	Within available payload space

PLATFORM WITH DEPLOYABLE MAGNETOMETER (Ilustration made in SolidWorks)

With a range sensitivity of 6nT to 313 nT and resolution of at least 8 nT we will be able to measure the magnitude and variations of the remaining magnetic field

Communication Subsystem

S-band will be used for transmitting constellation data and images to Pathfinder and UHF band for sending and receiving telemetry

The visibility window with Pathfinder for the Downlink/Uplink connection is about 90-150 minutes per day.

Data transmission is achieved in less than 1 minute (according to the number of data to be sent).

Band-S

UHF frecuency

Command, Control and Telemetry

KEY PARAMETERS

• RF Architecture: half duplex • Frequency range: 395-440 MHz • RF output power: up to 3 W Modulation: GFSK2 (MSK) • Symbol rate: 2400 / 4800 / 9600 • Bit rate: 2400 / 4800 / 9600 • Typical sensitivity: -122 dBm (GFSK2, 2400 bps) • Bit encoding: data whitening PN9 sequence CAN electrical interface (Satellite module) • UART interface (Ground module) • Power amplifier and oscillator temperature telemetry • 3 V single power supply

Payload communication

KEY PARAMETERS

Transmitter frequency	2200 to 2290 MHz
Transmitter modulation	BPSK/QPSK/8PSK, 100 kBd to 5 MBd
Transmitter power	20 to 33 dBm
Receiver frequency	2025 to 2110 MHz
Receiver modulation	BPSK/QPSK, 100 kBd to 5 MBd
Receiver sensitivity	-122 dBm(<1% PER, 100 kBd BPSK)
Input voltage	5.1 to 28.8 V
Typical power consumption (6 V input, 20°C)	RX: 1.5 W (5 MBd) RX+TX: 10.8 W (5 MBd, 33 dBm output)
Operating temperature	RX: -40°C to +85°C TX: -40°C to +70°C
Dimensions	93.0 mm × 87.2 mm × 17.5 mm
Mass	253 g

Electrical power subsystem

Subsystem	ADCS	Payload	Communicatio		
Power (W)	5	14	12		

Based on 8 rechargeable lithium-ion batteries (7.4 V, 13600 mAh, 92 Wh)

According to the benefits offered by the M6P platform with respect to batteries and with the analysis of the energy consumption of the components with the help of its data sheet provided by the manufacturer, it was deduced that the power system would supply the satellite in its operating time. life.

15

Triple-junction solar panels with epitaxial structure (30% efficiency).

According to the analysis of the orbit and with the help of the System Tool Kit software, the times in which the constellation will have light times for energy collection were known.

Sunlight Times

	Start Time (UTCG)	Stop Time (UTCG)	Duration (min)
Min Duration	25 Mar 2024 06:29:28.533	25 Mar 2024 06:58:16.582	28.801
Max Duration	2 Apr 2024 13:38:34.219	7 May 2024 07:03:56.369	50005.369
Mean Duration			99.317
Total Duration			214127.640

	Start Time (UTCG)	Stop Time (UTCG)	Duration (min)
Min Duration	16 Jul 2024 02:33:45.942	16 Jul 2024 02:33:56.224	0.171
Max Duration	25 Mar 2024 05:33:29.927	25 Mar 2024 06:29:28.533	55.977
Mean Duration			0.324
Total Duration			1395.881

	Start Time (UTCC)	Stop Time (UTCG)	Duration (min)
Min Duration	2 Apr 2024 01:49:12.695	2 Apr 2024 01:51:17.399	2.078
Max Duration	14 Jul 2024 14:26:38.736	14 Jul 2024 15:12:57.344	46.310
Mean Duration			41.212
Total Duration			88316.479

Penumbra Times

Umbra Times

THERMAL CONTROL SUBSYTEM

Based on the payload data sheet, the minimum operational temperature is approximately - 30 ° C and the maximum of 400 ° C.

-213.15 °C to 16.85 °C depending on the characteristic of the orbit at 100 km

The platform manufacturer will guarantee the payload required operational temperature despite the space environment temperature, which ranges from

Command and Data Handling (C&DH)

Consists of a SatBus 3C2 single board computer, the architecture of this board is based on a STM32 H7 series microcontroller with high performance and low power consumption ARM Cortex™ M7 core MCU, operating at a frequency of up to 400 MHz

Attitude Determination and Control Subystem (ADCS)

ADCS sensors and actuators:

Propulsion system

Sun sensor

Reaction wheels

		Year 1		Year 2				Year 3		
Phase Trimester	1	2	- 3	4	5	6	7	8	9	10
ANALYSIS										
Mission Definition										
Mission Requirements										
System Requirements										
System Requirements Review (SRR)										
Preliminary Mission Review (MDR)										
DESIGN										
Preliminary Design Review (PDR)										
Engineering Model (EM)										
Critical Design Review (CDR)										
Flight Model (FM)										
DEVELOPMENT										
Establish Ground Segment										
Obtaining Permits and Licences										
Acquisition of Components										
Customized Procurement of Components										
ASSAMBLY AND INTEGRATION										
Combination of Satellite System										
Quality Review (QR)										
Acceptance Review (RA)										
TESTS										
Check Satellite Subsystems										
Check Ground Communication										
Preparation of Operations Review (POR)										
LAUNCH										
Flight Model Revision (FMR)										
Launch Readiness Review (LRR)										
EXPERIMENT										
Start of Mission										
ELIMINATION										
Mission Closure Review (MCR)										
END OF MISSION										

Risks that may affect the mission

1. Launch delay of the Lunar Pathfinder, since being the one who would provide us with the communications service.

2. Failure of the deploy of the solar arrays

3. Communication failure between Lunar Pathfinder and the the constellation of CubeSats or ground segment.

4. Delay of licenses for launch

Failure of the deploy of the 5. magnetometer

				IMPACT		
		Negligible 1	Minor 2	Moderate 3	Significant 4	Severe 5
	Very likely 5	Medium 5	High 10	Very high 15	Extreme 20	Extreme 25
LIKELIHOOD	Likely 4	Medium 4	Medium 8	High 12	Very high 16	Extreme 20
	Possible 3	Low 3	Medium 6	Medium 9	High 12	8 Very high 15
	Unlikely 2	Very low 2	Low 4	Medium 6	Medium 8	High 10
	Very unlikely 1	Very low 1	Very low 2	Low 3	Medium 4	Medium 5

