

The design of a 6U nanosatellite constellation for passive debris tracking and monitoring

Presenters: Kudakwashe Jeje, John Paul Almonte, Pema Zangmo

19 October 2022

Table of Content

- ➢ Motivation
- Mission Objectives
- Concept of Operations
- CubeSat Architecture
- Implementation Plan
- Conclusion

Motivation

Fig 1. Low Earth orbit (14 320 of 19856 satellites)

Fig 2. Medium Earth orbit

Fig 3. Geosynchronous Orbit

Fig 4. Geostationary Earth Orbit

Mission Idea Contest

Motivation

Recorded Debris Incidents

- 1. 1996, Functional French satellite collision with exploded French rocket.
- 2. 2007, deliberate missile strike on defunct Feng -Yun 1C weather satellite by the Chinese during anti satellite test.
- February 10, 2009, collision between functional Iridium 33 communication satellite and a decommissioned Russian Cosmos 2251 satellite.
- 4. Most recent, Russian anti-satellite test created thousands of debris pieces.

Fig 5. Iridium 33 and Cosmos 2251 Satellites

IRIDIUM 33 and COSMOS 2251: AN HISTORIC COLLISION By Michael A. Earl

Motivation

Motivations

- Need for Debris management in the LEO
- Traffic management of the LEO
- Improving accuracy on current debris models

Key Advances in Space Technologies

- Technology miniaturisation (Radar Technology)
- Energy Efficiency

Figure 6: Orbits

https://www.javatpoint.com/types-of-satellite-systems

Mission Objectives

- 1. Creating a platform to improve debris detection and tracking efforts.
- 2. Improving the accuracy of current debris tracking catalogues .
- 3. Increasing the space situational awareness as far as debris is concerned.

Figure 7. Debris tracking model

https://uk.mathworks.com/help/fusion/ug/track-space-debris-using-keplerian-motion-model.html

Current Technology

Current Players in Debris Monitoring and Mapping

- Leo Labs
- NASA
- European Space Agency
- Russia and China

Technologies currently being utilised

- Ground based Radar
- Optical Radar

Figure 8: Kiwi Space Radar

https://www.leolabs.space/company/

Figure 9: LeoLabs Radar Interface

How? (CubeSat and Instruments)

- 6U Cubesat Bus
- Deployable solar panels
- Deployable Radar (Modified RainCube Radar)
- Cubesat in Low earth Orbit (300km to 400km)
- 30 CubeSats in 6 orbits equally spaced by an inclination of 60 degrees.
- Deploy as secondary payloads on rocket launchers.
- On-board data processing prior to downlink.

Figure 10: 6U CubeSat with radar CAD Model

How? (CubeSat and Instruments)

Figure 11: Deplorable Radar Antenna and Block Diagram

- The Radar is 2.5U including all the Radar and accompanying components.
- Designed for small satellites
- Tested on three 6U satellites that are currently in orbit.

https://www.nasa.gov/mission_pages/station/news/orbital_debris.html

Description	Value		
Mass	5.5 kg		
Volume (full assembly)	24.8 cm x 21.5 cm x 9.7 cm		
Power (standby/Operation)	3 W /10W		
Resolution	7.9 km (horizontal), 120 m (vertical)		
Radar peak transmit power	22 W		
Pulse chirp bandwidth	2.5 MHz		
Pulse repetition interval	60 s		
Data generation	Transmit mode: 50 kbit/s Receive mode: 10kbit/s		
Antenna deployment power	4.5 W peak, 2.2 W average for a 3 minute deployment		
Antenna gain	42.6 dBi		

Table 1. Radar Specifications

Power Budget (Major Subsystems)

Choice of Power Source

 Table 2. Power Source Comparison

	Solar Cells	Fuel Cells	Nuclear Power	
Power Generated	Lowest	Highest	Medium	
Complexity	Simplest	Medium	High	
Cost	Lowest	Medium	Highest	
Use on Cubesat	Possible	Not Possible (as of 2022 but research is underway)	Not Possible	
Life after not getting Sunlight	Least	Medium	Highest (up to 10.75 years)	

• From the table above and the budget constraints its evident that the choice of power source for the Cubesat is limited to Solar power cells.

Power Budget (Major Subsystems)

FOR UNFUNDED EDUCATIONAL USE ONLY 60÷ 55-50-45-40-35-Power 30÷ 25+ 20-15-10-5-3:00 3:00 Sep Fri 30 2022 15:00 6:00 12:00 18:00 21:00 9:00 Sat 1 Time (UTCG) Power (W) - Minus-X Power (W) - Plus-Y Power (W) - Minus-Y Power (W) - Plus-X Power (W) - Minus-Z Power (W) - Plus-Z Power (W) - All Solar Panel Groups

Figure 12. Power Generation in STK software

Power Budget (Major Subsystems)

Table 3. Power Budget Analysis

Subsystem	Component	Part description	Mass (g)	Average Power Consumption (W)	COTS/ Custom
Comms	Tx/Rx S-band antenna	ISISPACE S-band patch antenna	<50	2	COTS
OBC	Onboard Computer		~200	~1	Custom
EPS	Battery	GOMspace NanoPower BPX	500	6	COTS
	Power module	GOMspace Nanopower P60	191	0.6	COTS
	Solar panels	eHaWK 27L-50B (85W)	600		COTS
ADCS	3 axis ADCS	CubeADCS	554	0.571	COTS
	6 sun sensors	Cubespace cubeSense	0.03	0.1	COTS
	Star sensor	Cubespace cubeStar	55	0.284	COTS
	3 Magnetorquers	EXA MT01 Compact Magnetorquer	225	0.75	COTS
Payload	Ka-band radar	Modified RainCube radar	5500	~10	Custom
Structure	6U structure	6U CubeSat structure	~ 1000		Custom
Total			8875.03	21.31	

10/1/2022

Link Budget

Table 4. Link Budget Analysis

		Unit	Data Downlink	UHF Uplink
Frequency		MHz	2245	437.5
Modulation			BPSK	GMSK
Data Rate		bps	9600	4800
	Output Power	W	1	50
		dBm	30.00	47.0
Trongmission Side	Line Loss	dB	3.0	3.0
I ransmission Side	Antenna Gain	dBi	6.50	10
	EIRP	dBm	33.5	54.0
	Antenna Pointing Loss	dB	3.0	3.0
	Altitude	km	400	400
Satellite Positiion	Elevation	deg	10	10
	Range	km	1440	1440
	Path Loss	dB	162.6	148.4
Dath	Polarization Loss	dB	3.0	3.0
raui	Atmospheric Losses	dB	1.0	1.0
	Ionospheric Losses	dB	0.5	0.5
	Isotropic Signal Level at	dBm	-136.6	-101.9
	Antenna			
	Antenna Pointing Loss	dB	3.0	3.0
	Antenna Gain	dBi	6.5	2.15
	Line Loss	dB	3.0	3.0
	Receive Power at LNA Input	dBm	-136.1	-105.8
Dogoiyo Sido	LNA Gain	dB	20.0	-
Receive Side	Effective Noise Temperature	K	300	-
	Thermal Noise	dBm/Hz	-173.8	-
	Signal-Noise Ratio (Eb/N0 or S/N)	dB	17.9	-
	BER		1.00E-05	-
	Required SNR	dB	9.8	-
	Receiver Sensitivity	dBm	-120	-120
Link Margin		dB	3.9	14.2

System Block Diagram

Figure 12. System Block Diagram

CubeSat Subsystems

- 1. ADCS (Reaction wheels and Magnetorquers)
- 2. Communications (S Band) for high speed data transfer
- 3. Payload Radar and data processing unit
- 4. Thermal control unit
- 5. Electrical power system EPS

Mission Idea Contest

6. Onboard Controller for mission control

Figure 13: High Capacity battery pack

Figure 15: eHawk solar cells

https://mmadesignllc.com/product/ehawk-271-50b/

Figure 14: 3 axis ADCS control

https://www.cubespace.co.za/products/gen-1/integrated-adcs/cubeadcs/

Implementation plan

- 1. Start radar mission (One Orbit)
- 2. Satellite enters Idle mode to recharge and process data
- 3. Satellite starts data downlink
- 4. Satellite finishes data downlink and charging
- 5. Repeats radar mission

Figure 16. Implementation plan (not to scale)

Mission Summary/ Conclusion

- Generate 1.7 Gbit Data for a 90 minute orbit
- Data to be downlinked after onboard processing has been applied.
- The satellite can work on a 25% cycle duty
- One orbit with radar in transmit mode
- Three following orbits in radar standby to radiate waste heat, recharge batteries and downlink data.
- Use COTS to minimise development time and costs.

Figure 17: 6U CubeSat (Radar deployed)

Thank You