

Pre-3rd Mission Idea Contest Workshop

Monitoring Natural Disasters with Small Satellites – Smart Satellite Based Geospatial System for Environmental Protection

Krištof Oštir, Space-SI, Slovenia

Contents

- Natural and technological disasters
- Current state in mapping
- System that connects all stakeholders
- Crowd sourcing
- Small satellite system
- Space and ground segment
- Data processing
- Data delivery

Disasters

- Natural and technological disasters are causing huge damage and loss of lives
- They are more and more frequent

Natural disasters reported 1900 - 2011

EM-DAT: The OFDA/CRED International Disaster Database - www.emdat.be - Université Catholique de Louvain, Brussels - Beiglum

Estimated damage (US\$ billion) caused by reported natural disasters 1900 - 2011

Current state

- There is a huge and diverse number of end users that need mapping data
 - public authorities
 - civil protection
 - fire fighters
 - public
- They are not getting the information needed
 - Not frequent enough
 - Too complex
 - Not delivered in the form (way) needed

Copernicus EMS Product

Copernicus

- Global Monitoring for Environment and Security – GMES
- European information services based on satellite Earth Observation and in situ data
- Overall funding by the EU and ESA has reached over 3.200 million €
- Large part 738 Mio € dedicated to the development of satellites (Sentinels)
- EU Multiannual financial framework for 2014–20 includes 3.786 million € for the Copernicus
- Emergency Management Service natural or man-made disasters

There are several sources of satellite data

- Copernicus
- Space and Major Disasters Charter
- Disaster Monitoring Constellation

However

- Triggering is difficult
- Only authorized users can start mapping
- The users do not need data
 they need information
- Data is not easy to get
- Processing is not provided or not optimal

Firefighters and GIS technology

System that connects all stakeholders

Crowd generated disaster reports

- Use of crowd-sourcing to get information about the disasters
- Simple smart phone or web apps
- Used for detecting location and extend of disaster

Triggering of a small satellite system

- Collaborative network
- Semi automatic operation
 - reports are aggregated and delivered to the expert
 - Expert notifies the satellite operator(s)
- Space and ground segment
 - Optical
 - Radar
 - Network of GS
- Different nation and different operators

Image collection and processing

- Images have to be acquired automatically and simultaneously
- Received in the ground station
- Delivered to the value added providers
- Data has to be in a standard format
- Available to value added application providers
- Simple well defined processing steps
- Products defined by disaster type and end user (e.g. flood map, fire map, ...)
- Cloud computing should be used

Flood detection, modeling and mapping

Data delivery

- Maps
 - Image informative
 - Interpretation experts
- Textual information
 - Warning system
- Use internet technologies
 - Web mapping
 - Web GIS
- Crowd delivered maps and products

Mission requirements

Characteristics	Value	
Imaging mode	High resolution	Low resolution
Image size (swath)	20 by 20 km	100+ by 100+ km
Imaging area per day	10.000+ km ²	100.000+ km ²
Spectral resolution	0.45-0.90+ µm Multispectral R, G, B, NIR Panchromatic if used for pan sharpening Radar sometime in the future	
Spatial resolution	<= 5 m MS 1-2 m PAN	10-20 m MS
Temporal resolution	Daily coverage of selected (smaller) area Weekly coverage of larger area Less than daily for selected (smaller) area	
Spatial coverage	-60 deg S to +60 deg N	

Mission requirements

Characteristics	Value (range)
Orbit	Not necessary Sun synchronous
Pointing accuracy	< 500 m on the ground
Sensor type	Full frame Line scanner
Of-nadir imaging	Up to 30 deg in any direction
Imaging	Agile, sweeping, non-continuous area imaging, orientation during imaging, target following
Image compression	Allowed
Downlink latency	1-2 h Real-time
Time to the end user	< 6 h Near-real-time
Video	Beneficial

Main advantages of the proposed mission

- Collaborative or distributed small satellite system
- Multisensor and multiresolution (spatial and temporal)
- Standard protocols for triggering, data collection, processing and delivery
- End users have an important role in the system
- Available to the end users including public
- Crowd sourcing is used (to collect the need) for triggering

Contact

