

ORTA DOĞU TEKNİK ÜNİVERSİTESİ MIDDLE EAST TECHNICAL UNIVERSITY

CUBESAI: CubeSat-based Sensing and AI for Disease Prediction

THE TEAM

Alper Güvercin METU Aerospace Engineering 3rd Grade

İpek Ölmez METU Aerospace Engineering 2nd Grade

Yunus Emre Özdemir METU Aerospace Engineering 2nd Grade

Duru Ceren Cerit METU Aerospace Engineering 4th Grade

The 8th Mission Idea Contest for Multiple Nano-satellites

Introduction


- Mission Objectives
- Concept of Operations
- Key Performance Parameters
- Space Segment Description
- Orbit Description
- Implementation Plan

Introduction

- Vector-borne diseases (VBD) are • human illnesses caused by parasites, viruses, and bacteria that are transmitted by vectors.
- Malaria, dengue, chikungunya, yellow • fever, plague and Zika.

Fig.1. Vector-Borne Pathogens

- VBD causes more than 700.000 deaths every year. •
- 80% of the world's population are at risk of one or more of them [1]. ullet

Introduction

Primary aim of the project is early detection and prediction

of VBDs by using:

Idea Contest Nano-satellites

Remote Sensing •

- **Geographical Information System** •
- Artificial Intelligence •

THE NEED

Climate directly impacts the transmission of VBDs

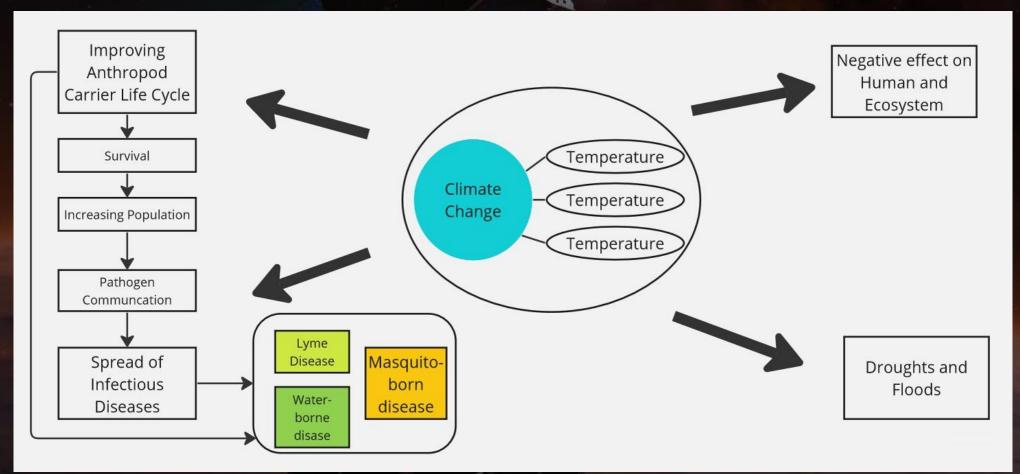


Fig.2. Environmental Factors Affecting VBDs

FURTHER INVESTIGATION NEED

Coinfection between COVID-19 and Vector Borne Diseases

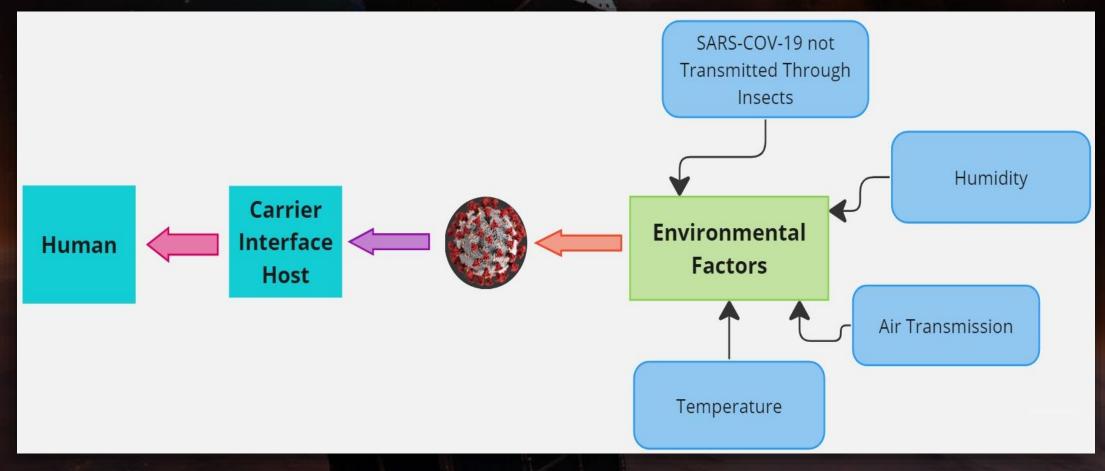


Fig.3. Coinfection between COVID-19 and VBD

Mission Objectives

Primary Objective

- -Near-real-time data for detecting VBDs
- -Creating a risk map of VBD

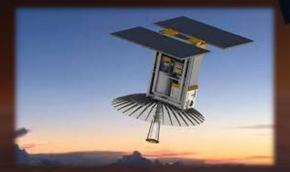


Fig.4. RAINCUBE Demonstration [2]

Third Objective

-Enhanced data processing and interpretation using AI

-Gathering data despite spatial and temporal constraints.

Secondary Objective -Backup for heavy rainfall or dense cloud coverage. -Demonstrating SAR within a 6U CubeSat

Concept of Operations

Space Segment and System Overview

CUBESAI-A (x3)

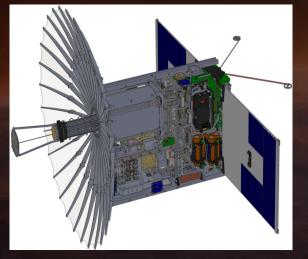
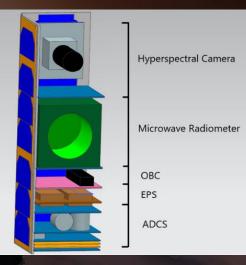



Fig.5. Drawing of the RAINCUBE [3]

- **6U** CubeSat
 - **Active Sensors**
 - -Synthetic aperture radar (SAR)
- Temperature, precipitation, vegetation, H20 vapor

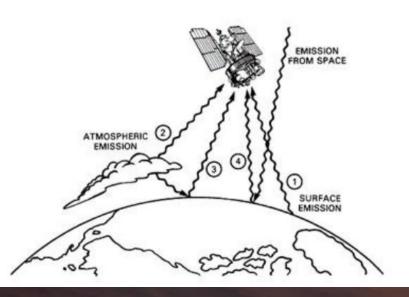
Fig.6.CAD drawing of the CUBESAI-P

CUBESAI-P (x3)

- **3U CubeSat** •
- **Passive Sensors** ۲
 - -Hyperspectral Camera
 - -Microwave Radiometer
- Temperature, humidity, • precipitation, wet zone, sky clearness.

Concept of Operations Why are active and passive sensors separated?

Active Remote Sensing Sensors



- Observation of the Earth's surface and atmosphere.
- Operates in dark conditions

ion Idea Contest

• Can penetrate clouds, generate 3D images

Passsive Remote Sensing Sensors

- Global observations of the Earth and it's atmosphere
- Requires less power
- For identifying land cover, mapping vegetation, detecting atmospheric gases

Concept of Operations

Ground Segment

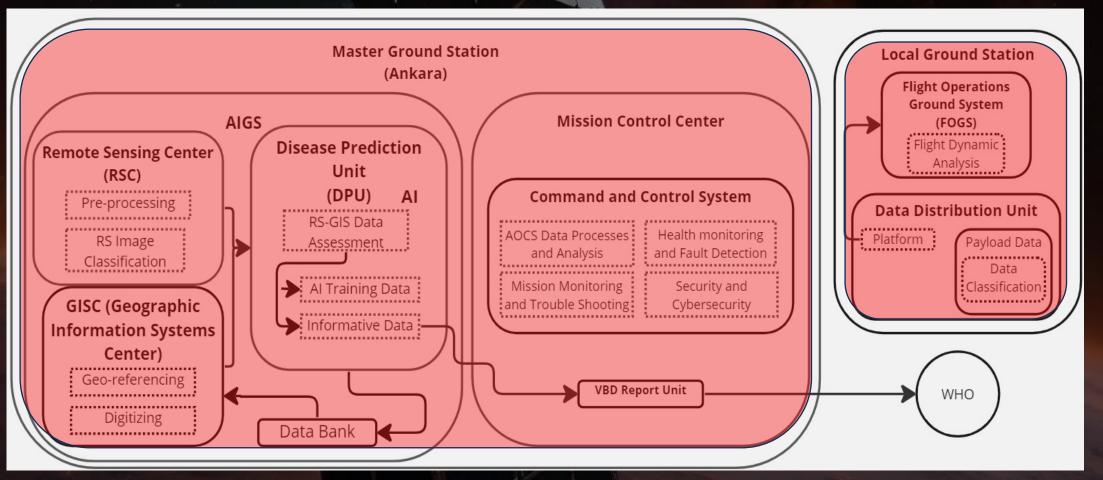
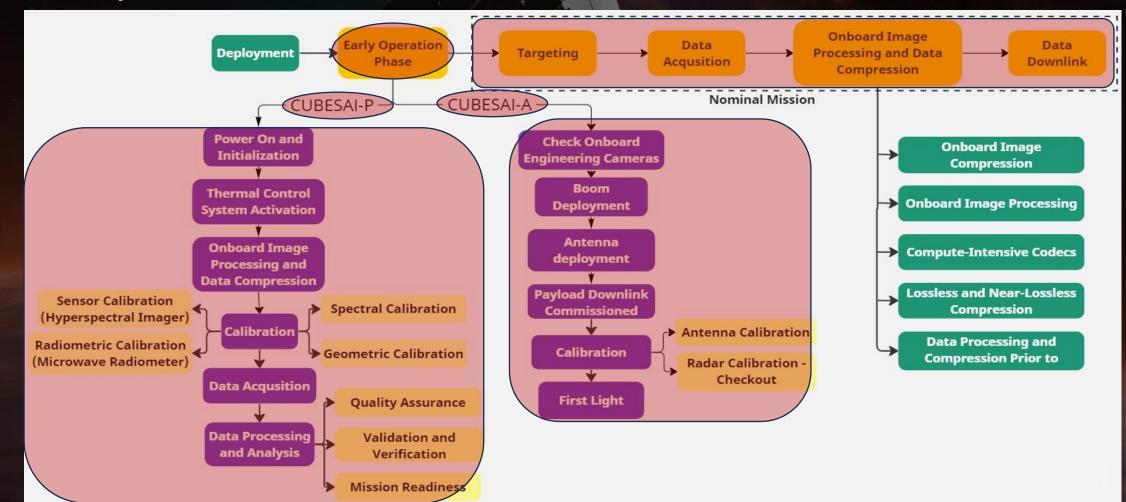


Fig.7. Ground Segment Operations

11

Concept of Operations

Mission Operations



Tasks	1/24	2/24	3/24	4/24	5/24	6/24	7/24	8/24	9/24	10/24	11/24	12/24	1/25	2/25	3/25	4/25	5/25	6/25	7/25
Pre-Launch Operations																			
Concept Development and Mission Definition																			
Merit and Feasibility Reviews																			
System Design and Technology Development																			
CUBESAI-A, CUBESAI-P Hardware Fabrication																			
Component/Equipment Acqusition and Test																			
Ground Station Design, Development, and Test																			
Environmental Testing																			
Regulatory Licensing																			
Launch and Deployment																			
CubeSat to Dispenser Integration and Test																			
Launch and Separation																			
Activation and Initialization																			
Mission Operations																			

Fig.8. Pre-deployment Phase Gantt Chart

Concept of Operations Mission Operations

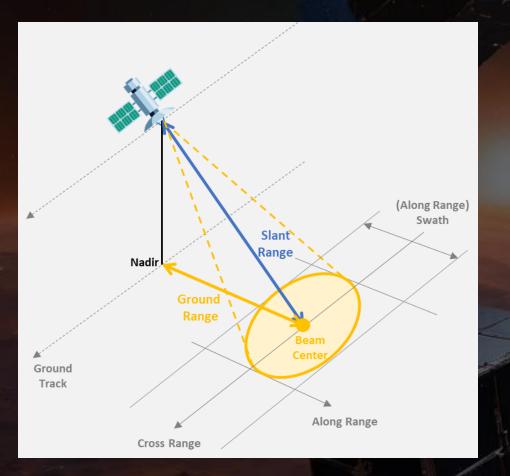
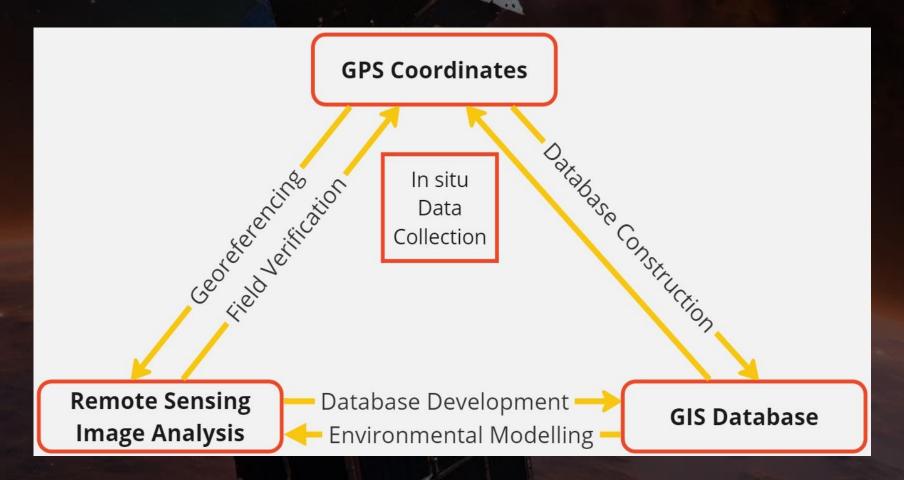


Fig.9. Detailed Operational Scheme

Key Performance Parameters

Synthetic Aperture Radar (SAR)



High Coverage (318 km) Swath Width
Minimized Power Consumption
6.5 kg

Antenna • X-band

- 39.6 dB gain at 8.4 GHz
- 1.5 m x 1.5 m
- deployable reflect array antenna

Key Performance Parameters Data Transformation

Fig.10. Anomaly Detection with AI-GIS-RS

ORTA DOĞU TEKNİK ÜNİVERSİTESİ MIDDLE EAST TECHNICAL UNIVERSITY

Instruments and Payloads	Mass (g)	Size (m \times m \times m)	Power Consumption (W)			
TT&C (EnduroSat)	270	0.01 imes 0.01 imes 0.004	0.5 - 2			
OBC (EnduroSat)	180	0.01 imes 0.01 imes 0.005	0.27 - 0.55 CUBESAI-P and CUBESAI-A			
ADCS (CubeADCS)	780	$0.09 \times 0.09 \times 0.057$	0.12 - 0.2			
Hyperspectral Camera (HyperScape50)	440	$0.095 \times 0.09 \times 0.117$	2.7 - 7 CUBESAI-P			
Microwave Radiometer	1330	0.01 imes 0.01 imes 0.01	16 - 21			
SAR	8200	0.2 imes 0.2 imes 0.1	22 - 28 CUBESAI-A			

Fig.11. Summary of Components

ORBIT/CONSTELLATION DESCRIPTION

Fig.13.Distribution of VBDs in the World [4]

2 3 4

Fig.12. Orbit Design

Animation of the orbit of a CUBESAI

IMPLEMENTATION PLAN

- World Meteorological Organization (WMO)
- World Health Organization (WHO)
- Turkish Space Agency (TUA)

Main Mission Risks

- 1. Power system and attitude control failure
- 2. Communication system failure
- 3. Payload and sensor failure
- 4. Mechanical failure
- 5. Data handling failure

TOTAL COST: ~1.5 MILLION DOLLARS [5]

ORTA DOĞU TEKNİK ÜNİVERSİTESİ MIDDLE EAST TECHNICAL UNIVERSITY

Thank you so much for the assistance!

Assoc. Prof. Dr. Halil Ersin Söken

Cansu Yıldırım and **Semra Sultan Uzun** from the Winner Team (PARS) of MIC7

Thank you for your attention.

Do you have any questions?

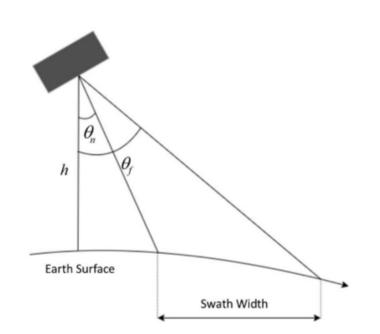
REFERENCES

[1] Vector-borne diseases (2020) World Health Organization. Available at: <u>https://www.who.int/news-</u> <u>room/fact-sheets/detail/vector-borne-</u>

<u>diseases#:~:text=Vector%2Dborne%20diseases%20are%20human,that%20are%20transmitted%20by%20vector</u>

<u>S</u>.

[2] https://www.jpl.nasa.gov. "New CubeSats to Test Earth Science Tech in Space." NASA Jet Propulsion Laboratory (JPL), www.jpl.nasa.gov/news/new-cubesats-to-test-earth-science-tech-in-space.
[3] "RaInCube (Radar in a CubeSat) - EoPortal." Www.eoportal.org, www.eoportal.org/satellitemissions/raincube.


[4] Golding, Nick & Wilson, Anne & Moyes, Catherine & Cano, Jorge & Pigott, David & Velayudhan, Raman & Brooker, Simon & Smith, David & Hay, Simon & Lindsay, Steve. (2015). Integrating vector control across diseases. BMC Medicine. 13. 249. 10.1186/s12916-015-0491-4.

[5] Golding, Nick & Wilson, Anne & Moyes, Catherine & Cano, Jorge & Pigott, David & Velayudhan, Raman & Brooker, Simon & Smith, David & Hay, Simon & Lindsay, Steve. (2015). Integrating vector control across diseases. BMC Medicine. 13. 249. 10.1186/s12916-015-0491-4.

 $SW = h \left(\tan \theta_f - \tan \theta_n \right) / n_{pol}$

where,

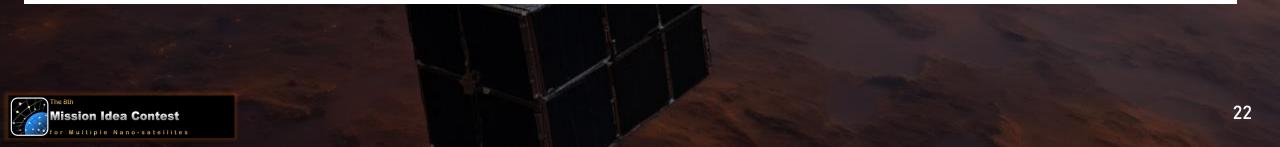
SW = swath width (318.0148829 km)

h = altitude (500 km)

 n_{pol} = number of polarizations (single)

 θ_n and θ_f = near and far range look angles (20°, 45°)

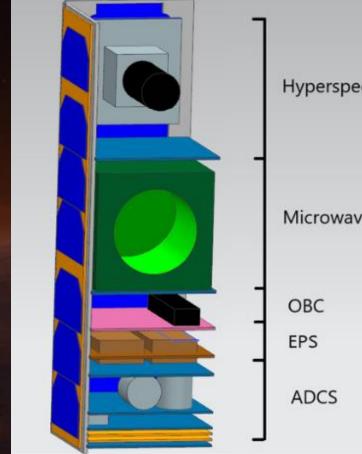
 $PRF_{min} = 2V_s / L_{az} = 20.3 \text{ KHz}$ & $\tau_p = L_{az} / 2V_s = 49.3 \mu s$

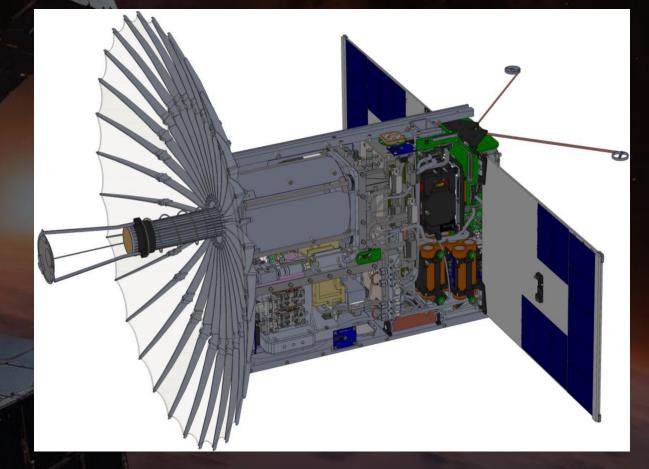

where,

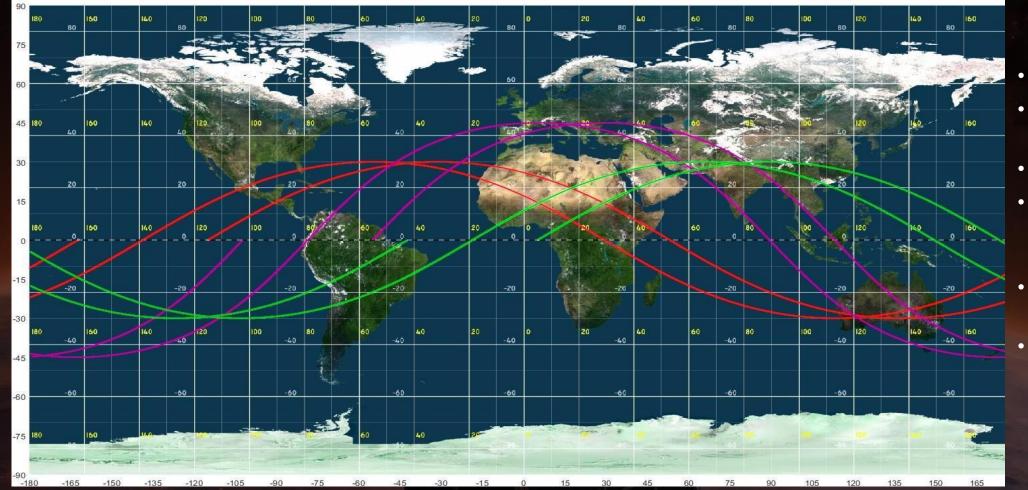
 $PRF_{min} = minimum required PRF$

 $V_s = orbital velocity (7.6 km/s)$

 L_{az} = azimuth dimension of the antenna (0.75 m)


 τ_p = maximum pulse duration


Instruments and Payloads	Mass (g)	Size (m \times m \times m)	Power Consumption (W)
TT&C (EnduroSat)	270	$0.01 \times 0.01 \times 0.004$	0.5 - 2
OBC (EnduroSat)	180	$0.01 \times 0.01 \times 0.005$	0.27 - 0.55
ADCS (CubeADCS)	780	$0.09 \times 0.09 \times 0.057$	0.12 - 0.2
Hyperspectral Camera (HyperScape50)	440	$0.095 \times 0.09 \times 0.117$	2.7 - 7
Microwave Radiometer	1330	$0.01 \times 0.01 \times 0.01$	16 - 21
SAR	8200	0.2 imes 0.2 imes 0.1	22 - 28



Microwave Radiometer

- Altitude: 500 km
- Semimajor Axis: 6871 km
- Eccentricity: 0
 - Inclinations: 30 degrees for two, 45 degrees for one
 - RAANs: 0, 60 and 120 degrees
 - Period: 5668.2 s (1.57 h)