Europa Reconnaissance Formation Mission

Presented By:

Aditya Raj Bhatia

Praneel Sharma

Dhanush Mamillapally

Yash Verma

2nd Year Aerospace Engineering SRM Institute of Science and Technology, Kattankulathur, India

Why Europa?

- Potentially habitable world right within our reach
- Made up of water ice and an enormous saltwater ocean
- The ocean could sustain life under certain conditions
- Carbon, Oxygen, Nitrogen, Sulfur & water presence on surface point to possibility of extraterrestrial life

Table of content

- 1. Mission Objectives
- 2. Launch and Orbital Design
- 3. RAAG Engine
- 4. CAMSAT
- 5. SCISAT: Magnetometer, LIDAR, Mass Spectrometer
- 6. RADARSAT
- 7. RELAY- Link Budget
- 8. Common components in all satellites
- 9. Mission Risks
- 10. Mission Timeline
- 11. Mission Impact
- 12. Conclusion

Mission Objectives

Map the underground topology of Europa by Ice Penetrating Radar Determine the surface composition of Europa

Quantify the magnetic field of Europa in a stable orbit

Capture highest resolution images of Europa's surface Generate a high-quality 3D model of Europa by cameras and LIDAR

Carrier Stage

RAAG

Rapid Astrogation Adaptative Generator

RAAG ENGINE

DELTA V BUDGET

Thrust - 1500N

Mass Flow Rate – 0.5591 Kgs/s

NTO Mass Flow Rate – 0.338 Kgs,

MMH Mass Flow Rate – 0.175 Kg

O/F Ratio - 2.181

Chamber Pressure – 800 psi

Max Burn Time – 194 mins (1165 sec)

Total Propellant Mass – 6500 kgs

*NTO- Dinitrogen Tetroxide *MMH- Monomethyl Hydrazine *O/F- Oxidizer by fuel ratio *LEO- Low Earth Orbit *HCO- Heliocentric orbit *TCM- Trajectory Correction Maneuver *JOI- Jupiter Orbital Insertion

1

CONTRA

HPMI PACKAGE

(HIGH PRECISION MAGNETOMETER INSTRUMENT)

CONSISTS OF :

- A SCALAR MAGNETOMETER CDSM(COUPLED DARK STATE MAGNETOMETER)
- TWIN VECTOR MAGNETOMETERS AMR (ANISOTROPIC MAGNETO RESISTANCE) MAGNETOMETER

WORKING:

THE CDSM magnetometer employs a multi-chromatic laser field and coherent population trapping resonances for stable, precise, and temperature-independent magnetic field measurements. Prioritizing simplicity, compactness, and efficiency.

malthea

AMR magnetometer uses the data from CDSM as a reference to calculate direction and magnetic field strength

2017 Mar 3 12:05:26.000 (UTC)

TECHNICAL MODIFICATIONS

To Make AMR Magnetometer a Zero-field detection device We used

- Full Wheatstone bridge Configuration (full Wheatstone bridge configuration provides a balanced state at zero magnetic field)
- Feedback Control System (actively adjusting parameters compensating magnetic fields, to maintain the bridge in a balanced state)
- Differential Measurements (Multiple sensors oriented in different directions)

CPT RESONANCE

APPLICATIONS OF HPMI PACKAGE

- CHARACTERIZING EUROPA'S MAGNETIC FIELDS IN OVERALL, STRENGTH AND DIRECTION TO CREATE DETAILED MAP OF MAGNETIC FIELDS ACROSS EUROPA
- DETECTION OF ANOMALIES IN MAGENTIC FIELDS
- INDICATES IN SUBSURFACE OCEAN BENEATH EUROPA
- STUDYING ICE-MAGMA INTERACTION
- UNDERSTANDING THE MOON'S INTERIOR DYNAMICS

BENEFITS OF HPMI PACKAGE

- UNDERSTANDING OF EUROPA'S EVOLUTION
- MISSION PLANNING AND NAVIGATION FOR FUTURE MISSIONS
- TESTING DIFFERENT HYPOTHESIS

The LIDAR's Mission

- Long-range CubeSat LIDAR: Range of up to 1,000 km
- Purpose: Mapping Europa's surface features, altimetry, and surface property analysis

How it Works:

- Laser pulses from satellite to surface
- Return signal captured by onboard telescope
- Measures distance by analyzing time taken by laser pulse

Technical Specifications

Parameter	Value
Range Capability	Up to 1,000 km
Range Resolution	15 cm at long range, 60-degree cone at short range
Power Consumption	14.3 W during operation
CO2 LIDAR Wavelength	2051 nm
Operation Range	1.9 nm to 2.1 nm

Application and Benefits

Applications of LIDAR:

- Detailed Surface Topography & Relief Mapping by combining data of CAMSAT
- Eurapa's Ice Thickness Estimation
- Atmospheric Studies
- Surface Composition Analysis
- Mapping & Navigation

Benefits:

- Detailed understanding of Europa's surface
- Identifying potential landing sites
- Estimation of subsurface ice thickness
- Precise spacecraft navigation

HF Configuration									
Value									
9MHz									
1MHz									
20-100µs									
≤300 m									
≤5.5 km									
150 m									
8m									
Frontier Radio Multi Lingual									
20W									

Alternate VHF Configuration									
Operation Frequency	16MHz								
Shallow-depth	≥3 km								
Pulse Time	20-100µs								
Vertical Resolution	≤30 m								
Along Track Resolution	≤2 km								
Dipole antenna	3m								

Objectives

- 1) Characterize the ice shell's global structure
- 2) Investigate material exchange processes among the ocean, ice shell, surface, and atmosphere
- 3) Determine scientifically compelling sites for future lander missions
- 4) Determine ice shell's thermal conductivity
- 5) Confirm presence of water and global subsurface ocean

Relay- Data Transmission Scheme

SCISAT:

- Calculate data size to be sent
- Calculate transmission time for all three recon sats
- Transmit data & transfer time to relay at 7184.27 MHz
- Relay sends signal at 8440.80 MHz indicating SCISAT transmission completion

RADARSAT:

- Begins transmission 20 sec after SCISAT's completion
- Transmits data to relay (stored in allocated memory)
- Relay sends signal at 8.3GHz to alert CAMSAT

CAMSAT:

- Initiates transmission after signal from relay at 8.3GHz
- Transmits images following the procedure of previous satellites

Relay:

- After receiving all data, ADCS checks antenna position
- Points antenna towards Earth with high precision
- Begins transmission at 7173.87 MHz

- Returns to charging mode if in sunlit area, sleep mode if eclipsed

Failure (if relay fails):

- Reconsats relay data to Europa clipper
- Transmission: reconsats to Europa clipper at 8424.5MHz
- Europa clipper to Earth at 7170MHz (Channel 21 DSN)

Data - Link Budget

Primary Antenna:	32X32" High Gain Antenna [35dBi, 25 Mbps – 8/16 PSK/QAM, 1.3 Mbps - QPSK]
Peer Antenna:	DSNTrackingStation [X 74.3 dBi 73 dBm [TL:9] QPSK 2.72 Mbps]
Relay Earth Uplink:	7173.87MHz
Relay – Earth Downlink	8428.58 MHz
Distance Max:	967264000000 m
Tx/Rx rate at max distance:	170.0 Kbps/1.36 Mbps
Distance Min:	587721000000 m
Tx/Rx rate at min distance:	340.0 Kbps/1.36 Mbps

ADCS (ATTITUDE DETERMINATION CONTROL SUBSYSTEMS) & **POWER SYSTEMS**

All these combines to provide an Accuracy of 365.9 arcseconds or 0.1

SSOC-D60 SUN SENSOR Orthogonal Configuration Accuracy of 0.3° $\pm 60^{\circ}$ FOV 0.039 Kgs

Adcole Coarse Sun Sensor Accuracy of 0.75° $\pm 60^{\circ}$ FOV 0.213Kgs

TITAN 350WHR MODULAR POWER ARRAY 350WHR, 84000mAh, 1.050Kgs

MOOG 058-118 3.6N lsp – 57 sec 1 of 8 CGT 30Kgs of CO_2

0.04Nms

MAI-SS STAR TRACKER Adcole Maryland Aerospace Cross Axis-5.7 arcsec, Boresight- 27 arcsec 0.305 Kgs 1.5 W

Measures the specific gravity and angular rate of the satellite 0.055 kgs uses 2 W per Sat

• RAAG Engine failure- Multiple ground testing increases performance confidence

 Micrometeorites- Carrier Stage Fairing decreases the probability of damage

 Reaction wheel failure- 4 wheels have been used so that redundancy is increased

 Lethal Jovian Radiation can destroy and make electronics useless- Radiation chamber inside each satellite houses most electronics

 Relay failure- Europa Clipper can be used as relay to send data to Earth

Mission Risks and solutions

Year	2024				2025					2026						2027						
Month	Jan-Feb	Mar-Apr	May-Jun	Jul-Aug	Sep-Oct	Nov-Dec	Jan-Feb	Mar-Apr	May-Jun	Jul-Aug	Sep-Oct	Nov-Dec	Jan-Feb	Mar-Apr	May-Jun	Jul-Aug	Sep-Oct	Nov-Dec	Jan W1	Jan W2	Jan W3	Jan W4
Design (Structural+Avionics)																						
Preliminary Design																						
Detailed Design																						
Design Freeze																						
Payload Development & Testing																						
OBC																						
Reaction Wheels																						
Solar Sensor																						
Heater																						
IMU																						
MAI-SS Star Tracker																						
Frontier Radio for Relay																						
Frontier Radio for RADARSAT									_													
Battery																						
Solar Panels																						
X Band Transmitter and Receiver																						
Radiation Chamber for electronics																						
Mass Spectrometer																						
LIDAR																						
Magnetometer									_													
Wide Field Camera																						
Narrow Fiels Camera																						
Cubesats structures																						
Carrier Stage Fuel Tanks								-														
Carrier Stage Fairing																						
Carrier Stage Structures																						
CGT for Carrier Stage																						
RAAG Engine														_								
RAAG Static fire																						
EIPR Antenna																						
PCS and electronic subsystems																						
Coupler for Falcon 9 attachment																						
Assembly																						
Orbit Refinement																						
Simulated environemtal testing																						
Acoustic and Vibration																						
Thermal and Vacuum																						
Radiation Testing																						
Contamination control																						
Integration with Falcon 9 FT																						
Stage Operations Readiness Review																						
Launch																						

Mission Impact

- Global collaboration
- Advancement in scientific database
- Provides opportunities for new theories regarding Europa's magnetic field, surface characteristics and subsurface ocean
- Lays foundation for future missions
- First spacecraft to study Europa in a stable orbit
- Helps in landing site determination for lander mission

