Formation Flying Mission Title: ERFM: Europa Reconnaissance Formation Mission Primary Point of Contact (POC) : Praneel Sharma Email: sharmapraneelas@gmail.com Co-authors: Aditya Raj Bhatia, Dhanush Mamillapally, Sahil Hinge, Yash Verma Organization: SRM Institute of Science and Technology, Kattankulathur, Chennai, India 1. Mission Objective

Introduction:

Since 300BCE our species has been wondering are we alone in the Universe or not? The discovery of signs of extant life is critical if we are to understand biology as a universal process. We turned towards the sky in search for answers and found some hints. Jupiter's moon Europa is a prime target in our exploration of potentially habitable worlds beyond Earth. This fascinating world contains a massive saltwater ocean hidden under 10 to 20 kilometers of ice which could host life. To investigate whether extraterrestrial life exists on Europa we need an in-situ exploration of the environment but before sending any landers, we must have a survey of Europa to define a suitable landing zone. Our mission intends to orbit Europa and gain as much science as possible.

<u>Scientific impact</u>: The most promising instrument of all is our GPR (Ground penetrating Radar). It would be able to penetrate deep into the ice shell revealing the underground topology of Europa. As Europa is tidally locked, we would be passing the same sites over and over which gives us an advantage to study the surface changes and geology of Europa as it orbits Jupiter. The LIDAR and mass spectrometer can test the basic elemental requirements for carbon-based life forms to exist. Finding a new form of life opens endless research possibilities for all fields like biology and chemistry.

<u>Technological impact</u>: This mission acts as a technology demonstration as well as a scientific explorer as no CubeSats have ever been sent to the outer solar system let alone, orbit a moon of Jupiter. These satellites divide a big satellite into smaller CubeSats, saving mission cost. The data from our mission would help in laying the foundation for further in situ Europa explorations like Europa Lander.

Social impact: The discovery of life on Europa would imply our universe is much more alive than we ever imagined. It would change the fundamental context in which all of humanity understands itself. Today, the

Earth is faced with global challenges that can only be met by increased international cooperation. At such a time, the growth of a unifying cosmic perspective is potentially of enormous importance.

2. How to realize the mission objectives

The formation flying is an **in-track formation** (Fig 1) [1] in which the satellites occupy slightly different orbital planes separated by right ascension of the ascending node, which accounts for the rotation of the Earth. The CAMSAT and AΩ Pt A a) Fig. 1 In-track formation.

SCISAT are released to the left side at an inclination of 45 degrees from a vertical reference line (Fig 2). The RADARSAT is released 45 degrees to the right of the reference line. The Relay is released along the vertical line. The CAMSAT, RADARSAT and Relay are released at the same time. As there is no necessity of

position change after decoupling, we do not require any individual propulsion on the satellites. CAMSAT, RADARSAT and SCISAT (called recon sats together) will have a two-way data link to the Relay. The recon sats to relay transmission occurs at 8.2GHz and vice versa at 8.3GHz (Fig.3). The relay communicates the recon sat data to Earth at 8.4GHz that will be received by the Deep Space Network (DSN). The recon sats require their main payloads to be facing the Nadir (towards Europa's

surface) at time of observation. In case of Earth signal loss, a special Earth finding maneuver named "EFM1"

(Earth Finding Maneuver1) is to be performed. EFM1 involves the use of Received Signal Strength Indicator. The satellite measures the received signal strength for 8GHz along one plane by rotating using

the ADCS and points the antenna along the maximum signal strength and locks movement in that direction. It would then rotate in the plane perpendicular to the initial plane and lock the antenna in the direction with maximum signal strength. Thus, Earth (DSN signal at 8GHz) would be found.

3. Technological aspects

Orbital Design: The CubeSats are inside a thick fairing (micrometeorite protection) on a carrier stage (4,250Kg: 2,231 kg of oxidizer (Dinitrogen Tetroxide) and 2,019 kg of fuel (Monomethyl Hydrazine) with a fuel to oxidizer ratio of 1.81:2). The carrier stage is powered by a 1.5 kN hypergolic engine we designed with max delta V=7,753m/s. It is used for final heliocentric orbital (HCO2) insertion, deep space maneuvers, JOI (Jupiter Orbital Insertion), Europa intercept and EOI (Europa Orbital Insertion).

Launch: The Mission starts on 27th January, 2027 with launch from Space Launch Complex 41 at Cape Canaveral Space Force Station in Florida using the Falcon 9 Full Thrust variant. The Falcon 9 puts the payload to a 200km Low Earth Orbit and perform a burn putting the payload into an HCO with excess velocity of 3,150m/s. **Heliocentric transfer & Deep Space Maneuvers:** After that our carrier stage performs a burn providing a delta V of 1,850m/s for final HCO2 with excess velocity=5,000m/s (C3=25 km²/s²). The HCO trajectory is like Juno probe launched by NASA. After a 1.01 year transfer, a 511m/s burn is done at the aphelion (320,797,178 kilometers) on February 5, 2028 to encounter an earth flyby on December 15, 2028 which will speed up the payload from a heliocentric velocity of 34,785m/s to 38,584 m/s at the perihelion (149.599x10⁶km) increasing the aphelion to 778.479x10⁶km , the semi-major axis of Jupiter's orbit around the Sun. Post flyby, the payload will have a 2.93 years transfer till Jupiter encounter on November 22, 2031. V excess at arrival is 5,642m/s and the pericenter velocity of the Jovian hyperbola is 20,236m/s. **JOI:** At the

hyperbola pericenter, a retrograde burn with delta V of 1,236m/s is done to put the vehicle into a Jovian orbit with 670,900km, 190,000m/s and 14,546,182km and 876.3m/s as the perijove and apojove altitude and velocity respectively with a period of 4.455 months (3,254 hours) and 0 inclination relative to Europa. **Europa Intercept and EOI:** It would then fly to its apojove with a Europa intercept while approaching perijove on April 9, 2032 at 14:40 UTC when Europa has a phase angle of 178.8° relative to Jupiter at an altitude of 675,500km. A 4 m/s burn is done to raise the perijove to 675,600km and a broken plane maneuver is done such that the vehicle approaches Europa at a slightly inclined orbit. The vehicle approaches Europa with an excess velocity of 5,191m/s and pericenter velocity at 100km altitude from the surface (distance from center: 1,660.8km) of the approach is 5,550m/s. A retrograde burn of delta V=3,745m/s is done. Thus, 1,660km and

9,000km are final apoapsis and periapsis with a 12hrs period. Overall mission delta V is 7,526m/s. **Post EOI:** After the satellites are placed in a nearly polar orbit, the 4 CubeSats are released (fig. 2) via spring mechanism so that the max separation between two sats is 10km.

	Relay	CAMSAT	SCISAT	RADARSAT
Full Operation	23.2	14	13.2	23.2
Sleep Mode	55	55	55	55

Payload Description: Every CubeSat has: Computer, Reaction Wheels, Solar Sensors, Star tracker, IMU, Battery, Solar Panels, X-band transmitter and receiver. All these satellites will have a small radiation chamber housing the essential electronics like computer, battery, transmitter and receiver protecting them from Jupiter's intense radiation (5.4 Sv around Europa). The Lithium polymer TITAN-1 350Whr Power Bank Module (84000mAh) provides the performance as shown in Table 1. The on-board computer (OBC) has a 32-bit microchip with 16MB RAM, 8GB Flash NAND Memory. All scientific data collected is stored in the OBC and x band transmitter till transmitted. Due to the Jupiter's extreme distance from the sun, the amount of power generated by solar panels at Jupiter is $1/25^{th}$ generated at LEO requiring large and efficient solar panels. Concentrated PV Cell based solar panels provide an efficiency of 40-42% generating 65W at direct sunlight and 62W at $\pm 15^{\circ}$ of incident angle. The solar array would be made of 40 units, 22cm*36cm each which would fold to symmetrically fit with the CubeSat body. The X-band transmitter provided by endurosat has a transmission power of 18W at 33 dBm and 32GB storage. EnduroSat's X-Band 4x4 Patch Antenna Array provide >16dBi gain. Satellites in depth:

i)CAMSAT: It consists of a narrow and a wide field camera. Both the images can be combined to make a high-quality image of the surface of Europa like never before. This can enhance the study of geological and surface phenomena on Europa's surface.

	Table 2 Camera	parameters
	Wide Field	Narrow field
Spatial res	39m	3m
SWATH	80km	12km

ii)SCISAT: It consists of three instruments: <u>a) Mass Spectrometer</u>: A Low Energy Ion Neutral Mass Spectrometer (0.1eV to 20eV) can make high-resolution, in-situ measurements of [H], [He], [O], [N2], [O2] & [H+], [He+], [O+], [N2+], [O2+] with a Ram facing FOV of 10° x 10°, mass resolution M/dM~10-12, mass range 1-40 amu, Ion densities: 1e3 to 1e8 /cm3 and a sampling time of 0.1-10s. [2] <u>b) LIDAR</u>: Long-range CubeSat lidar configurations can support 1,000 km of range and can be used for Europa's topology mapping (identification of ancient lakes, rivers, fissures, and overall Europa Geodesy), altimetry, measure surface properties of solid ices (Spectral identification of minerals, water, methane, CO2, and others in the 1-4 um bands), tell the difference between liquid and solid phase and dynamic studies of plumes. The lidar is capable of 3D imaging for 10-degree cone angles at long range and 60-degree cone angles at short range [3]. This

LIDAR will have a 2051 nm wavelength for CO2 lidar and the laser can efficiently operate between 1.9 nm and 2.1 um. c) Magnetometer: The theory is that time-variations of Jupiter's magnetic field induce Europa to produce its magnetic field, probably via electric currents flowing in a salty ocean beneath Europa's ice thus allowing scientists to confirm whether an ocean exists on Europa, and measure its salinity and depth.[4] We are using NSS Magnetometer provided by New Space Systems with a range of $\pm 60\ 000\ nT\ \pm 2\%$ and a measurement sensitivity of $\leq 8\ nT$.

iii) RADARSAT: It searches for an ice-ocean interface and characterizes the ice shell's global structure, investigates the processes governing material exchange among the ocean, ice shell, surface, and atmosphere, characterizes scientifically compelling sites, and hazards, for a potential future landing missions, determines whether the ice shell is thermally conductive or unstable due to convection, searches for water signatures, compositional, thermal variations, buried deposits and confirms the presence of a global subsurface ocean. It operates by sending pulses of 9MHz ranging between 20-100 microseconds towards the ground which penetrate deep into icy surface and are reflected. The reflected waves are then received, processed and sent to the relay. The radio will be a Frontier Radio Multi Lingual (Transceiver), having a transmission power of 20W and sounding capability from 4 to 10km vertically to measure the thickness of Europa's ice shell [5].

iv)RELAY: It consists of a Frontier Radio: 7.9 to 8.5 GHz both uplink and downlink having 2,625 Mbps uplink and downlink speed (8PSK modulation). It has a transmission power of 30W. The frontier radio will be used for: recon sat data reception, data forwarding to Earth and relaying commands from Earth to recon sats. The high gain antenna (HGA) on the relay requires $\pm 5^{\circ}$ of accuracy to point towards Earth. It is made up of circularly polarized unit cells. The entire antenna is an array of these unit cells, 32 on a side. The antenna is 32.5 by 32.5 inches and can achieve a downlink rate to Earth of 33 kilobits per second at 80 percent efficiency [6]. An accuracy of $\pm 0.1^{\circ}$ which is enough to point to Earth.

4. How to realize the required relative attitude and position control of satellites.

The attitude of the satellites is controlled by the ADCS (Attitude Determination and Control Subsystems). Our ADCS consists of 3 reaction wheels, 6 solar sensors on each face of the CubeSat, an IMU (Inertial Measurement Unit) and a star tracker (The MAI-SS Star Tracker). All these combines to provide an accuracy of 365.9 arcseconds or 0.1° . The sun sensors can find the attitude of satellite relative to the sun in 2 axes. The star tracker helps in determining the location and attitude of a satellite by analyzing the placement of the surrounding stars relative to the satellite. IMU measures specific gravity and angular rate of the satellite. The reaction wheels then work together to change the attitude. The reaction wheels each provide ± 0.5 mNm torque at 0.04 Nms (5V power supply) sold by Rocket Lab. The sun sensor sold by CubeSat shop has $\pm 60^{\circ}$ FOV, accuracy of 0.3°. The star tracker sold by Adcole Maryland Aerospace has Cross Axis- 5.7 arcsec, Boresight-

4

27 arcsec accuracy.

5. Rough images of satellites

RADAR-SAT	Mass(kg)	Dimensions(cm)	Power Usage(W	
ADCS				
Computer	0.038	9x9x1	0.3	
Reaction Wheels	0.555	5 x 5 x 4	5.4	
Solar sensor	0.035	5 x 3 x 1.2	1.89	
Heater	0.05		10	
IMU	0.055	4.4 x 3.8 x 2.1	2	
The MAI-SS Star Tracker	0.305	5.5 x 6.5 x 7.0	1.5	
Telemetry				
X band transmitter	0.27	9.59 x 9.02 x 2.25	18	
X band receiver	0.1	5 x 5 x 2	5	
Power Systems				
Battery	2.4	8.9 x 9.5 x 9.8		
Solar Panels	8.5	(140 x 110)*2	65(Generation)	
Payload				
Ground Penetrating Radar - Electronics	1	10 x 10 x 10	20	
Ground Penetrating Radar - Dipole Antenna	0.11	1500 x 0.1		
Structure weight	2			
Total	15.418		64.09	

CAM-SAT	Mass(Kg)	Dimensions(cm)	Power usage(W	
ADCC				
Computer	0.038	9 x 9 x 1	0.3	
Reaction wheels	0.555	5x5x4	5.4	
Solar Sensor	0.333	5x3x12	1.89	
Heater	0.215	57571.2	1.05	
IMU	0.055	4.4 x 3.8 x 2.1	2	
The MAI-SS Star Tracker	0.305	5.5 x 6.5 x 7.0	1.5	
Telemetry				
X band Transmitter	0.275	9.59 x 9.02 x 2.25	18	
X band receiver	0.1	5 x 5 x 2	5	
Power Systems				
Battery	2.4	8.9 x 9.5 x 9.8		
Solar Panels	8.5	140 x 110	65(Generation)	
Payload				
Wide Field Camera	0.4	10 x 10 x 6.5	4.5	
Narrow Field Camera	1.8	10 x 10 x 24.5	10	
Structure weight	2	36 x 22 x 10		
Total :	16.641		58.59	

	RELAY	Mass(Kg)	Dimensions(cm)	Power usage(W			SCI-SAT	Mass(Kg)	Dimensions(cm)	Power (W)
 Deputer Notes 10 2038 5 9 9 9 11 0 3 Sekto wheel 0 033 5 3 8 3 1 1 0 0 Sekto wheel 0 033 5 3 8 3 1 1 0 0 Sekto wheel 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 4 8 3 8 2 1 0 Deputer 0 035 1 2 0 1 3 1 0 Deputer 0 035 1 2 0 1 3 1 0 Deputer 0 035 1 2 0 1 3 1 0 Deputer 0 035 1 2 0 1 3 1 0 Deputer 0 035 1 2 0 1 1 0 1 0 Deputer 0 035 1 2 0 1 1 0 1 0 1 0 Deputer 0 035 1 2 0 1 1 0 1 0 1 0 1 0 Deputer 0 035 1 2 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	ADCS	-			1		ADCS			
Backton wheels 0.053 5.5.5.4 5.4 Seider Ferreer 0.035 5.5.5.4 5.4 10 Seider Ferreer 0.055 5.5.5.4 5.4 10 Mill 0.055 5.5.8.6 7.0 1.5 The Mode Star Tracker 0.055 5.8.6.5.7.7 1.5 The Mode Star Tracker 0.055 5.8.6.5.7.7 1.5 The Mode Star Tracker 0.055 5.8.6.5.7.7 1.5 Star Tracker 0.05 5.8.6.5.7.7 1.5 Star Tracker 0.05 5.8.6.5.7.7 1.5 Star Tracker 0.05 5.8.6.6.7 5.0.9 Star Tracker 0.05 5.8.6.6.7 5.0.9 Star Tracker 0.05 5.8.6.7 5.0.9 Star Tracker 0.05 5.9.8.7 5.0.9 Star Tracker 1.5.10 5.0.9 5.0.9 Operation Cost 1.7.9.1.3.6 1.00.000 1.01.00 Total Mission Cost 1.7.9.1.3.6 1.00.000 1.01.00.00	Computer	0.038	9x9x1	0.3	1	Compute	er	0.038	9 x 9 x 1	0.3
 Saker Savora Oldo Oldo Oldo Saker Savora Oldo Saker Savora Oldo Oldo Saker Savora Oldo Oldo Saker Savora Oldo <	Reaction wheels	0.555	5x5x4	5.4	1	Reaction	wheels	0.555	5x5x4	5.4
 Heiter 0005 44×38×22 2 He Mu35 Star Tracker 0005 44×38×20 10000 He Mu35 Star Tracker 0005 44×38×20 10000 He Mu35 Star Tracker 0005 44×38×20 10000 He Mu35 Star Tracker 0000 1000 He Mu35 Star	Solar Sensor	0.213	5 x 3 x 1.2	1.89	1	Heater	1301	0.213	JX3X1.2	1.89
Mul 0.005 4.4 × 1.8 × 2 2 Indemotive 0.305 5.5 × 6.5 × 7 1.5 Toronter Rado 1 10 × 10 × 10 20 Prover Systems 1 10 × 10 × 10 20 Prover Systems 1 10 × 10 × 10 20 Prover Systems 1 10 × 10 × 10 20 Prover Systems 1 10 × 10 × 10 50 × 50 × 20 Statistic 1.5 1.5 50 × 50 × 20 1.5 Statistic 1.5 1.5 50 × 50 × 10 × 20 1.3 Components 3.191,336 1.000,000 1.100,000 1.100,000 1.100,000 Total 1.500,000 1.100,000 <t< td=""><td>Heater</td><td>0.05</td><td></td><td>10</td><td>]</td><td>IMU</td><td></td><td>0.055</td><td>4.4 x 3.8 x 2.1</td><td>2</td></t<>	Heater	0.05		10]	IMU		0.055	4.4 x 3.8 x 2.1	2
he Mode S solar Trader liskender Toritier Rado attery 2 4 89 x 35 x 65 x 72 1 0 x 10 x 10 x 10 attery 2 4 89 x 35 x 65 1 0 x 10 x 10 x 10 3 0 x 12 x 10 4 0 x 10 x 10 x 10 4 0 x 10 x 10 x 10 x 10 4 0 x 10 x 10 x 10 x 10 4 0 x 10 x 10 x 10 x 10 x 10 4 0 x 10 x 10 x 10 x 10 x 10 x 10 4 0 x 10 x 10 x 10 x 10 x 10 x 10 x 10 4 0 x 10 x	IMU	0.055	4.4 x 3.8 x 2.1	2	1	The MAI	-SS Star Tracker	0.305	5.5 x 6.5 x 7	1.5
Isolate Redet 1 10 x 10 x 10 30 Power System 1 10 x 10 x 10 30 Power System 2.4 8.9 x 6.5 x 3.8 5 Sider Panels 2.4 8.9 x 6.5 x 3.8 5 Sider Panels 2.4 8.0 x 6.5 x 3.2 5 Sider Panels 2.6 8.0 x 6.5 x 3.2 5 Sider Panels 2.6 8.0 x 6.5 x 3.2 5 Sider Panels 2.6 8.0 x 6.5 x 3.2 5 Components 3.191,336 1.500,000 5 5 Components Cost 1.200,000 1.000,000 1.000,000 1.000,000 Total Mission Cost 7.2.791,330 1.24Mbp Downlink (Earth-Relay) 12Mbp Downlink (Earth-Relay) 12Mbp Downlink (Earth-Relay) 12Mbp Sider Fanecs Components Sider Fanel Sider Fanels Sider Fanels Fuerences I Constructure weight Sider Fanels Sider Fanels I Christ Sabol, Rich Burns, and Craig A. Sider Fanels Sider Fanels Sider Fanels J Christ Sabol, Rich Burns, and Cra	The MAI-SS Star Tracker	0.305	5.5 x 6.5 x 7.0	1.5	1	X band T	ransmitter	0.275	9.59 x 9.02 x 2.25	18
 Power Systems 1 101411 (1302) 24 43 4 3 4 3 5 x 43 51 (140 x 110)² <	Telemetry		10 10 10	20	-	X band re	eceiver	0.1	5 x 5 x 2	5
Aniver, spacing 2.4 39.32.5.8.3 65(6eneration) Nurcture weight 2 36.2.2.8.10 51.00 Details Constructure weight 2.0 36.2.2.8.10 51.00 Details Constructure weight 2.0 36.2.2.8.10 51.00 Details Constructure weight 2.0 36.2.2.8.10 36.2.2.8.10 Components 3.1.91,336 Constructure weight 2.0 36.2.2.8.10 36.2.2.8.10 Operation Cost 1.000,000 Operation Cost 1.000,000 0.0.000 0.0.000 0.0.000 0.0.000 Total Mission Cost 72.791,336 Components Sectore 0.0.000 0.0.000 0.0.000 Total Mission Cost 72.791,336 Components Sectore 0.0.000 0.0.000 Fuere References Components Sectore Sectore Sectore Sectore Sectore 1 Charlows, Solows, So	Prontier Radio	1	10 x 10 x 10	30	-	Pov	ver Systems	24	80.005.008	
Back Panels 13 1 1400 x 100/2 SiGeneration Janctree weight 2 1 36 22 x 10 51.09 Details Constraint US0 (S) 51.09 Nass Spectremeter 2 10 52 0 x 10 x 14 43 Details Components 6.7,000,000 Details Components 1.500,000 Operation Cost 1.100,000 Details Communication Speel Details Communication Speel Upink (Relay-Sarth 1 270 khps Downlink (Earth-Relay) 2 kbps Downlink (Earth-Relay) 2 kbps Total Mission Cost 7,791,336 Summunication Speel Dink (Relay-Sarth 1 20 khps) Downlink (Earth-Relay) 2 kbps Upink (Relay-Sarth 1 20 khps) Downlink (Earth-Relay) 2 kbps Dink (bp)	Power systems	2.4	80,05,08		ł	Solar Par	nels	8.5	(140 x 110)*2	65(Generation)
Sinction weight 2 36 + 22 × 16 10 Total: 15.16 51.00 Details Const in USD (5) 10.00 Components 3.191,336 20.22 × 10 Launch 67.000,000 20.183 20.922 × 10 Testing 1.500,000 00.000 10.000,000 Total Mission Cost 72.791,336 20.000 Dependence Cost 1.100,000 10.000,000 Total Mission Cost 72.791,336 20.000 Upink(Relay-Earth) 200klps Dowlink (Earth-Relay) 2klps Upink(Relay-Earth) 2klps Dowlink (Earth-Relay) 2klps Upink(Relay-Earth) 2klps Dowlink (Earth-Relay) 2klps Upink(Relay-Earth) 2klps Dowlink (Earth-Relay) 2klps Upink(Relay-Earth) Earth Earth Earth Earth Earth Eart	Solar Panels	8.5	(140 x 110)*2	65(Generation)	1		Payload		(/ _	
Instal 15.116 51.02 Details Components 3.191/3.36 2.32 3.62 2.03 2.03 Launch 67.000.000 Consumerse 1.100.000 1.100.00	Structure weight	2	36 x 22 x 10		1	Mass Spe	ectrometer	0.56	9 x 10 x 13	1.8
Details Construction 3,191,336 Components 1,200,000 Testing 1,300,000 Operation Cost 1,000,000 Total Mission Cost 1,20,000 Total Mission Cost 1,000,000 Total	Total :	15.116		51.09	1	Magenet	ometer	0.082	9.914 x 4.3 x 1.7	0.735
Components 3.191133 60.05* Launch 67.000.000 100.000 Operation Cost 1.100.000 100.000 Total Mission Cost 1.200.000 100.000 Total Mission Cost 1.200.000 124Mhps Downlink (Earth-Relay) 124Mhps Total Mission Cost 1.200.000 124Mhps Downlink (Sat -Relay) 124Mhps Total Mission Cost 1.200.000 124Mhps Downlink (Sat -Relay) 124Mhps Total Mission Cost 1.200.000 124Mhps Downlink (Sat -Relay) 124Mhps Total Mission Cost 1.200.000 124Mhps Downlink (Sat -Relay) 124Mhps Total Mission Cost 1.200.000 124Mhps Downlink (Sat -Relay) 124Mhps Total Mission Cost 1.200.000 124Mhps Downlink (Sat -Relay) 124Mhps Total Mission Cost 1.200.000 124Mhps Downlink (Sat -Relay) 124Mhps Total Mission Cost 1.200.000 124Mhps Downlink (Sat -Relay) 124Mhps Total Mission Cost 1.200.000 1.000.000 1.000.000 1.000.000 1.000.000 1.000.000 1.	Details		st in USD (\$)		-	Structur	e weight	2	36 x 22 x 10	
Laurch 67.000.000 Testing Operation Cost 1,100.000 Total Mission Cost 72.791.336 Total Mission Cost 72.791.392 Total Mi	Components	3.19	91.336				Total	17.133		60.925
Testing 1.500.000 Operation Cost 1.100.000 Total Mission Cost 72.791.336 Uplink(Relay-Sat) 124Mps Downlink (Earth-Relay) 124Mps Uplink(Relay-Sat) 124Mps Downlink (Earth-Relay) 124Mps Image: Cost 72.791.336 Image: Cost	Launch	67,0	000,000		mmunicatio	n Sneed	1			
Operation Cost 1.100.000 Total Mission Cost 72.791,336 Uplink (Relay-Sati) 124Mps Downink (Sat-Relay) 124Mps Uplink (Relay-Sati) Uplink (Relay-Sati) 124Mps Downink (Sat-Relay) 124Mps Uplink (Relay-Sati) Uplink (Relay-Sati) Uplink (Relay-Sati) 124Mps Uplink (Relay-Sati) 124Mps Uplink (Relay-Sati) Uplink (Relay-Sati) Uplink (Relay-Sati) Uplink (Relay-Sati) 124Mps Uplink (Relay-Sati) Uplink (Relay-Sati) Uplink (Relay-Sati) Uplink (Relay-Sati) Uplink (Relay-Sati) Uplink (Relay-Sati) Uplink (Relay-Sat	Testing	1,50	00,000		link(Dology	Earth)	270Vhng	Doumlin	1 (Earth Dalar)	2Khng
Total Mission Cost 72,791,336 Upink (KERY-Ski) LiAMps Downink (Sa-Ackai) LiAMps Fuer RADARSAT Schwarkie Fuer RADARSAT Schwarkie Fuer RADARSAT Schwarkie Fuer RADARSAT Schwarkie Fuer RADARSAT Schwarkie Cost Fuer RADARSAT Schwarkie Fuer RADA	Operation Cost	1,10	00,000	0	$\frac{1111K}{11}$ (Relay-		270K0ps	Dowinin	$\frac{K(Latur) \rightarrow Kelay}{1}$) 2K0ps
Store Fuer store Fuer store Store Fuer store Fuer store I Chris Sabol, Rich Burns, and Craig A. claughlin, "Satellite Formation Flying Design d Evolution", JOURNAL OF SPACECRAFT Nikolaos P. Paschalidis, "Mass Spectrometers rules". Nikolaos P. Paschalidis, "Mass Spectrometers rules".	Total Mission Co	st 72,7	791,336	U	link (Relay-	→Sat)	124Mbps	Downlin	k (Sat \rightarrow Relay)	124Mbps
Seferences 1 Chris Sabol, Rich Burns, and Craig A. cLaughlin, "Satellite Formation Flying Design d Evolution", JOURNAL OF SPACECRAFT ND ROCKETS Vol. 38, No. 2, March– April 10. 1 1 1 1 10. 1 10. 1 10. 10. 10. 10. 10. 10. 10. 11. 12. 12. 13. 14. 15. 16. 16. 17. 18. 19. 19. 10. 10. 10. 10. 11. 11. 12. 13. 14. 14. 15. 16. 16. 17. 18. 19. <		Figure: RAD	Reaction Wheels GPR Dipo Antenna Star Tracker	e Solar Sensors 4x4 patr antenn	iver			Compu	ter CAM-SAT Scher	and Receiver matics
References] Chris Sabol, Rich Burns, and Craig A. cLaughlin, "Satellite Formation Flying Design d Evolution", JOURNAL OF SPACECRAFT ND ROCKETS Vol. 38, No. 2, March– April 101.] Nikolaos P. Paschalidis, "Mass Spectrometers r Cubesats".		Figure: 50	Cubesal Struc Antenna eaction Vheels Battery	ture X Ba Computer X Ba X Ban Receiv Ma Spectroi	eter	Frontier	Radio Star Tracke Compute	esist structur	matics	Action Antennas (x5) H
 acLaughlin, "Satellite Formation Flying Design ad Evolution", JOURNAL OF SPACECRAFT ND ROCKETS Vol. 38, No. 2, March– April 101. Nikolaos P. Paschalidis, "Mass Spectrometers r Cubesats". 	References] Chris Sabol,	Rich	Burns, and	l Craig A		-	A	— Hig	th Gain Antenna	
J Nikolaos P. Paschalidis, " <u>Mass Spectrometers</u> <u>r Cubesats</u> ".	cLaughlin, " <u>Sat</u> <u>d Evolution</u> ", . ND ROCKETS 001.	ellite Fo JOURN Vol. 38	ormation Fly AL OF SP 3, No. 2, M	ving Design ACECRAFT arch– Apri			ŕ			Relay
	[] Nikolaos P. Pa <u>or Cubesats</u> ".	aschalid	is, " <u>Mass S</u>	<u>pectrometers</u>			Carrier CAM-	SAT	/ RADAR-S	AT

[3] M. Storm, H. Cao, M. Albert, and D. Engin, "CubeSat lidar concepts for ranging, topology,

Figure: Full Payload with carrier

sample capture, surface, and atmospheric science," 2017

- [4] Nico Schilling et al, "<u>Time-varying interaction of Europa with the jovian magnetosphere</u>.
- [5] <u>REASON</u> instrument NASA.
- [6] HGA for direct Earth telemetry.