

01. Project Introduction	04. 3
02. Mission Objective	05.ł
03. Ground Segment	06.1

Space Segment

Key performance parameters

Risk Management

Project Introduction

TerraTrack devices are used in SALVS-01 to detect wildlife species and their location using its noise. These devices record animals noises, process it using an AI, and transmit the data to the TerraTrack-Sat for storage and transmission back to Department of National Parks

Ground Segment

TerraTrack Alert TerraTrackHub

Mission Component

Space Segment

TerraTrack-Sat

hornbill

Wildlife Sanctuary

Eld's deer

A#2

Malayan Tapir

A#1 A#3

Plain-pouched

A#4

A#5

Wild water buffalo

Mission Objective

- Locating an animal from its noise
- Determine species of an endangered animal using an Artificial Intelligence from its noise
- Lighten a load for any forest officers

Concept of Operation

TerraTrack Hub

Collect the data and relay them to the satellite

TerraTrack Alert

Record the animals noise, process them and relay them to the TerraTrack Hub

TerraTrack-Sat

Receive and transmit the data to groundstation

Concept of Operation

- detect and record animals noise
- analyze the animals species
- send and relay data from others to TerraTrack Hub

Omni-directional Acoustic Microphone AS-0

Flexible PCB antenna

LoRa Connect Transciever (Semtech SX1262)

SD card

Battery charging module (TP 4056)

Raspberry Pi4

Why this Design?

- Lightweight
- Capable of tolerating harsh environment
- The material used has less environmental damage
- Relatively cheap

- Low power usage
- environment
- Many organizations used

Why this microphone?

Omni-directional Acoustic Microphone AS-0

• Capable of sensing the

- acoustic frequency range
- Capable of tolerating harsh

(action, node, distance, total_distance, parent)

- TerraTrack Alert placement formation
 Don't require too many TerraTrack Alert to cover a sufficient area
 The geometry of this configuration allow us
 - to easily relay data from Alert->Alert->hub.

Communication coverage

- Right position

Environmental condition

• Density of the forests

Power

Sufficient number of TerraTrack Alert

• Use generator to suffice

The Process

The process involves a Fourier transform, filtering with Low Pass and High Pass filters to obtain two types of sound data. These data are then used to train an AI model, which will be analyzed for performance in sound classification. The model will be placed on a Raspberry Pi 4 connected to a microphone to capture and classify various animal sounds while recording observed animal data.

Al Training - Al's key performances

- Precision
- F1-score
- Recall
- Percentage of Accuracy
- Numbers of Correct Classification

Model	Precision	F1-Score	Recall	Accuracy Percentage	Number of Correct Classification	Summation of score
Model 1	0.727	0.811	0.452	75.16	3	4
Model 2	0.527	0.466	0.952	24.84	1	1

AI Training - Recurrent Neural Network (RNN)

Tested using a familiar sound specimen

1.0 0.5 0.0 F -0.5 -1.0 -1.5 0

Tested using an unfamiliar sound specimen

Tested using a familiar converted sound specimen from .csv to <u>.wav</u>

AI Training - Recurrent Neural Network (RNN)

Output Evaluation

Evaluate the Al's exactness by calculating for the Mean- Absolute Error (MAE) and Root Mean Square Error (RMSE).

y_true_array = np.array(y_true) y_pred_array = np.array(y_pred)</pred

rmse = np.sqrt(mean_squared_error(y_true_array, y_pred_array)) print("Root Mean Square Error (RMSE):", rmse)

Root Mean Square Error (RMSE): 0.0

correct_predictions = $np.sum(y_true == y_pred)$

F1-score: 1.0 Recall: 1.0 Accuracy: 100.0 % Precision: 1.0 Number of Correct Predictions: 10

```
f1 = f1_score(y_true, y_pred, average='weighted')
recall = recall_score(y_true, y_pred, average='weighted')
accuracy = accuracy_score(y_true, y_pred)*100
precision = precision score(y true, y pred, average='weighted')
```

```
print("F1-score:", f1)
print("Recall:", recall)
print("Accuracy:", accuracy,"%")
print("Precision:", precision)
print("Number of Correct Predictions:", correct_predictions)
```

Implementation plan (ground) #1

3 teams to standby at each area and another team is at TerraTrack hub to test its capabilities in the field.

Implementation plan (ground) #3

Increasing the database for AI as much as possible by find a noise base from internet or recording interest animals noise at zoo.

Implementation plan (ground) #2

The TerraTrack Hub will also be assemble in a sanitize and uncontaminated of human scent, because animals tend to avoid the presence of humans.

Concept of Operation

Constellation

- Group of 8 satellites
- Altitude 500 km
- 1 hour, 34 minutes, and 36 seconds

sat2

Orbit (LEO)

Cost effective

Orbit and Constellation

Implementation Plan (space) #1

More of TerraTrack-Sat will be sent to space once the initial set are retired to expand the service of our project.

Implementation Plan (space) #2

Some of the TerraTrack-Sat will be designed by students to support the industry in the future.

Key Performance

325 m minimum communication range

Ground Segment

20 m

minimum detection range

Space Segment

300 s

maximum delivering data time

Status(+)

power consumtion

Risk Management

An antenna was turned away

Tighten the antenna base

|||||||

Natural direct disturbance

Test the durability of our instruments in a simulated environment

Power Shortage Make more efficient Circuits

Instrument falling off placement

Tighten the placement

Insufficient data storage Clear cache data, and compress data

AI Performance

Increase the training data, training cycle, and training models for the AI

ı||||II

Ambient noise Interference

Using the internal filter to filter it out

