TECHNOLOGY DEMONSTRATE OF BONE-LOSS-REDUCING BACTERIA CULTURE FOR DEEP SPACE

SARAN SEEHANAM
CHATIYAR ARDCHON
WATCHARIN UNWET
JULINTHIP PUTTAWONG
NUTTHAYA BUNMAK
NATTAKORN KASAMASUMRAN

FREAK

OUTLINE

INTRODUCTION

MISSION OBJECTIVES

KEY PERFORMANCE PARAMETERS

EXPERIMENT CONCEPT DESIGN AND SETUP

IMPLEMENTATION PLAN

RISK

DEEP SPACE EXPLORATION

Weightless

Radiation

MONTHLY !!!

3-4 years recovery after returning on Earth

Drug therapies

Weight-bearing exercises

Dietary supplements

PROBIOTICS

Maintain a healthy community of microorganisms in our body

Substances production with desirable effects

Influence the body's immune response

Lactobacillus reuteri (L.reuteri)

SUSTAINABLE GEALS

MISSION OBJECTIVES

To apply the results from the experiment for developing Lactobacillus reuteri (ATCC 6475) to be probiotic food that could reduce bone loss and increase the immunity of astronauts and people on Earth

To study the effects of microgravity on bacterial growth

To compare the growth rate of bacteria cultured in space bay using broth medium and agar medium

To apply the results from the experiment for further developing a bacteria culture system for deep space exploration

KEY PERFORMANCE PARAMETERS

During the operation, bacteria in broth medium and agar medium must be increased as composed to an initial state

The color in each broth medium must be changed to indicate the bacterial growth

All sensors must be able to measure the temperature, pressure, and humidity

Payload must be able to connect with International Space Station and downlink data to user

SPACE SEGMENT DESIGN

SPACE SEGMENT DESIGN

CONCEPT OF OPERATION

Laboratory & Clinostat

International Space Station

CONCEPT OF OPERATION

Data collecting

Data handling

Downlink and Data processing

CONCEPT OF OPERATION

pH Measurement (Using Bromothymol Blue)

Growth area comparison

IMPLEMENTATION PLAN

EVENT	L-18M	L-16M	L-14M	L-12M	L-10M	L-8M	L-6M	L-4M	L-2M	L+1M
SYSTEM DETAIL DESIGN										
PROTOTYPE MODEL										
ENGINEERING MODEL										
FLIGHT MODEL										
MANUFACTURING										
CERTIFICATED AND TRANSPORTATION										
	LAUNCH AND OPERATION									
MISSION MANAGEMENT AND DATA COLLECTION										

RISK

RISK LEVEL

Communication between ISS and payload failure

Bacteria not surviving during operation

Power failure

The experiment is contaminated

Loss of funding and team member

CONCLUSIONS

EFFECTS OF MICROGRAVITY ON BACTERIAL GROWTH

CULTURING PROBIOTIC BACTERIA IN SPACE

REDUCE BONE LOSS FOR DEEP SPACE EXPLORATION

THANK YOU