

The 5th

Mission Idea Contest

UNISEC GLOBAL

Micro/Nano Satellites for Global Sustainable Development

19 November, Strasbourg France

Arid and Semi-Arid Lands Satellite (ASAL-SAT)

LoRa ground sensor network for ASAL areas

Kiruki Cosmas Kyushu Institute of Technology

Introduction

Era of "big" data

- Can remote areas benefit?
- How to collect this data?

Sub Sahara Africa

- Pastoralism
- Wildlife

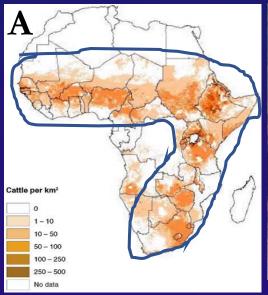


Image: FAO

A: Cattle distribution

B: Elephants distribution

C: Lion distribution

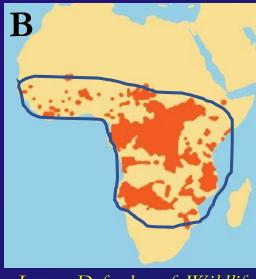


Image: Defenders of Wildlife

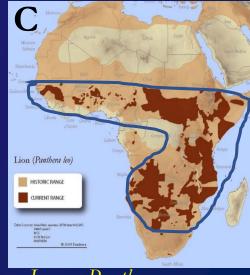


Image: Panthera.org

Human-Wildlife

- Co-Existence
- Pasture and Water Conflicts
- Endangered Wildlife

Image: REUTERS/Goran Tomasevic

Image: REUTERS/Goran Tomasevic

11 endangered rhinos were moved to start a new population. 10 died.

A. Human-Wildlife Conflict, Laikipia Kenya, Feb 2017

B. Carcass of an elephant, Laikipia Kenya, Feb 2017

Disaster Management

Flash floods monitoring

Image: The Standard Newspaper, April 2018

A. Mandera Floods, Kenya, 2018

Image: The Nation, April 2018

B. Turkana Floods, Kenya, 2018

ASAL-SAT

Mission Objectives

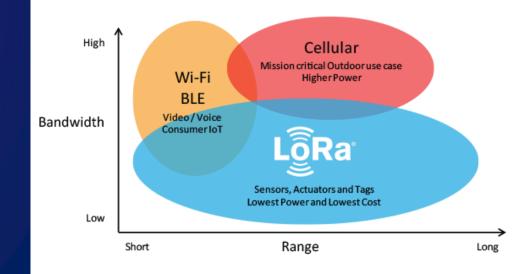
- Wildlife and Livestock Population mapping, enumeration and tracking
- Vegetation cover surveillance, and pasture and water identification
- Disaster e.g. Flash floods warning system

How to achieve this?

- Very remote areas
- Lack of infrastructure Power, communication
- Low population density

LoRa and LoRaWAN Introduction

- LoRa Chirp Spread Spectrum (CSS) modulation
- LoRaWAN Communication Protocol built on the LoRa physical layer

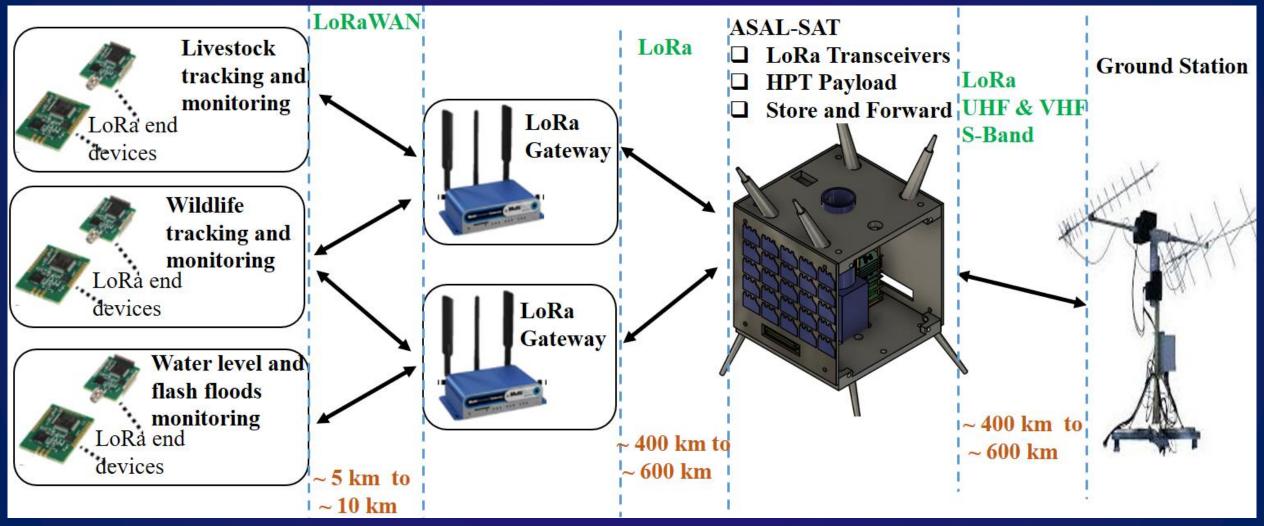

5th MIC, Strasbourg, France Nov 2018

- Link between gateways and backend servers?
 - ➤ GSM/Cellular; Fibre
 - > ASAL-SAT

OSI Model

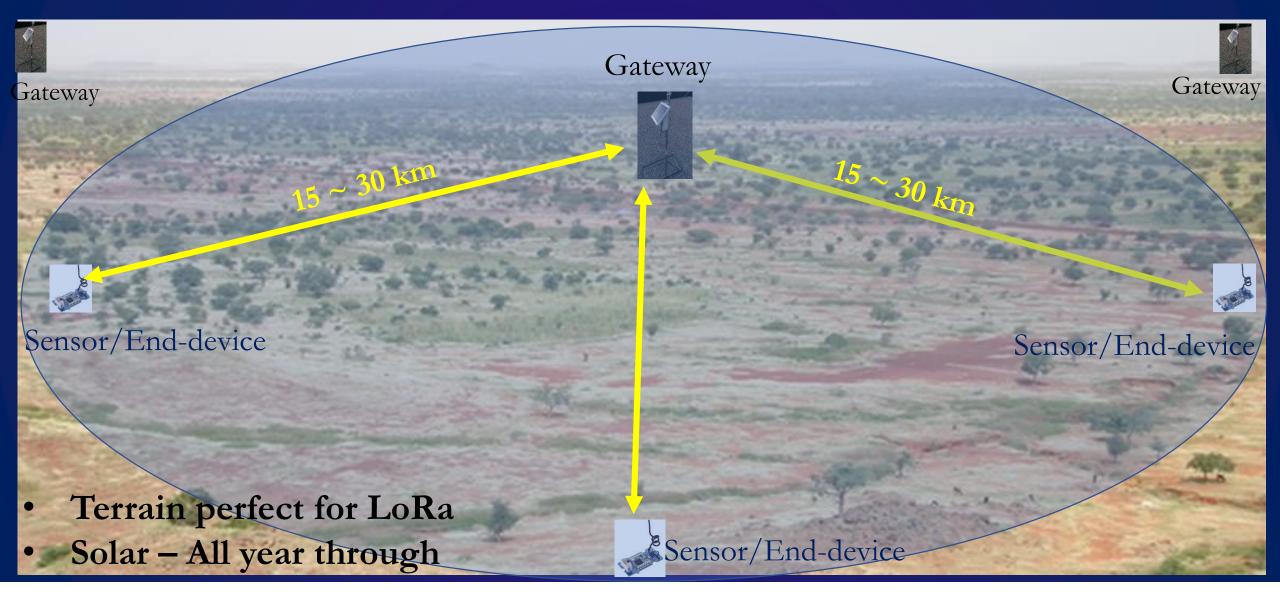
LoRaWAN Network Data Link LoRaWAN Physical LoRa

LoRa and LoRaWAN - Attractive Features



- Low power consumption (10 years of battery lifetime)
- Long communication range (2-5 km in urban centres and 15 km in rural areas)
- Operates in the license-free regulated ISM bands (between 166 to 1020 MHz)
- LoRa based devices are cheap and highly affordable

Concept of Operations

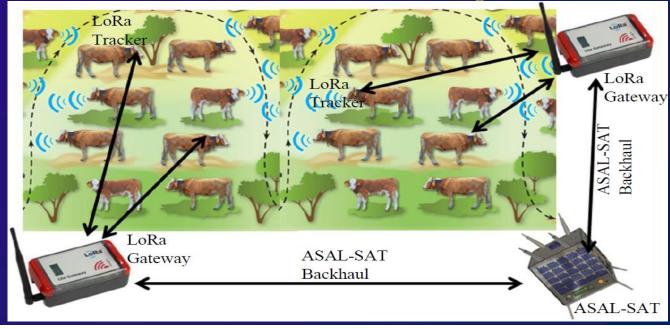


Mission Idea High Level

Ground LoRa-based Network

5th MIC, Strasbourg, France Nov 2018

Livestock Tracking


- Nomadic Lifestyle
- Cattle rustling
- Real & Decoy LoRa bands

Improve this

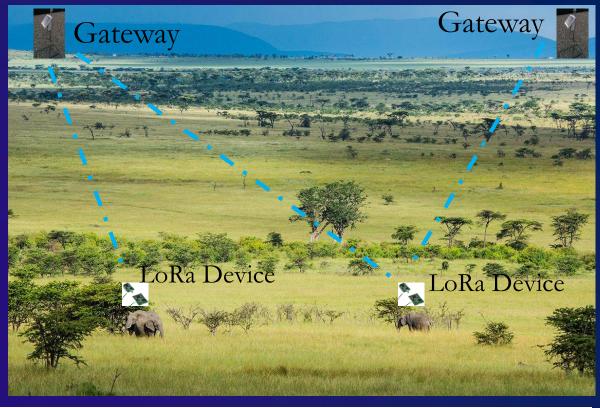
Image: PRISE/Ray Morris

Image: CattleWatch

LoRa Ground Data Generation Estimation

• Area under consideration ~100 km²

Population density	Average persons per	Households per 1	Total Households
	Household	km ²	$in 100 \text{ km}^2$
$30/\mathrm{km}^2$	6	5	500
Average livestock per	Livestock with LoRa	Total animals with	
household	tracker per household	trackers in 100 km ²	
100	10	5000	
LoRaWAN overhead	Animal Identification	Total packet size per	Total packet sizes
size per packet	and tracking data size	tracker	in 100 km ²
13 bytes	5 bytes	18 bytes	9000 bytes

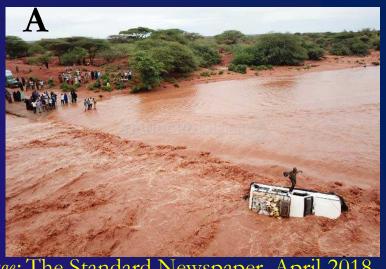

- Low Data size suited to LoRaWAN: $100 \text{ km}^2 \sim 9 \text{ kB}$
- $100 \text{ km}^2 \sim 10 \text{ gateways sufficient for } 15 \text{ km radius}$
- More gateways ~ Increase robustness, minimize packet loss

WildLife Tracking

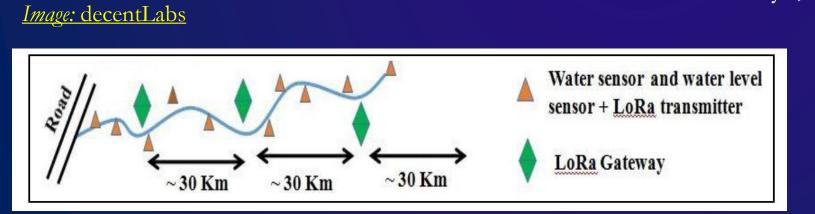
- Endangered Species
- Tracking and mapping
- Gateways can have GPS
- LoRa Triangulation for end devices

Comparison with Existing Solutions

	VHF Collars	GPS/GSM Collars	GPS Satellite	LoRa + ASAL-
			Collars	SAT
Data Reception	Handheld radio	GSM mobile phone	Commercial	Gateways &
	& GPS recorder	coverage	Satellite	ASAL-SAT
Batteries	3 years	2 years	2 years	~ 10 years
Lifetime				
Weight		300 – 500 g	400 – 700 g	< 100 g
Cost (USD \$)	300 – 500	1000 - 2000	2500 - 4000	10 - 50



Flash Floods/Water Level Monitoring and Warning System


C. LoRa Ultrasonic Water Level Sensor

A. Mandera Floods, Kenya, 2018

Image: The Standard Newspaper, April 2018

B. Turkana Floods, Kenya, 2018

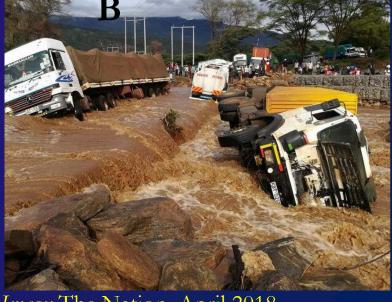
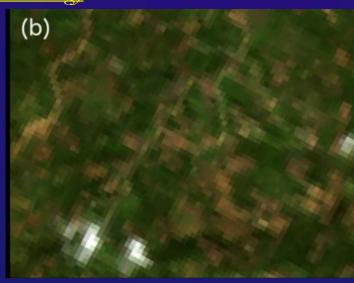


Image: The Nation, April 2018



Vegetation Cover Surveillance

- Curb overgrazing, deforestation, desertification
- Assess grassland and savanna degradation
- Aid in pasture and watering points location

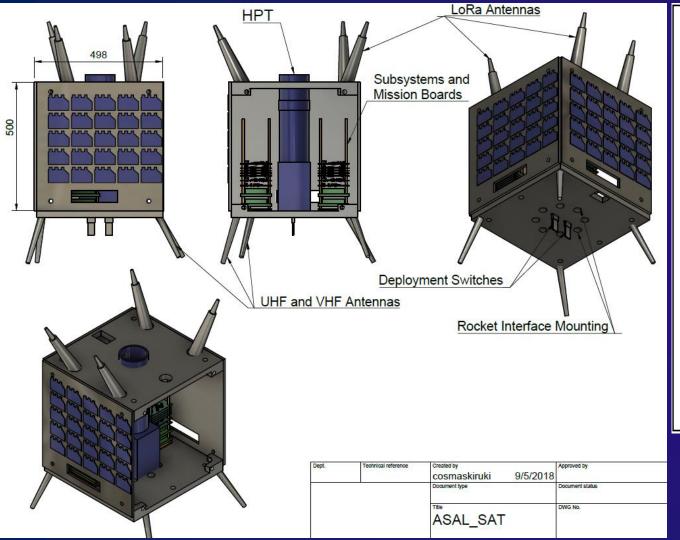
Image: The Philippines, Dept. Science and Technology

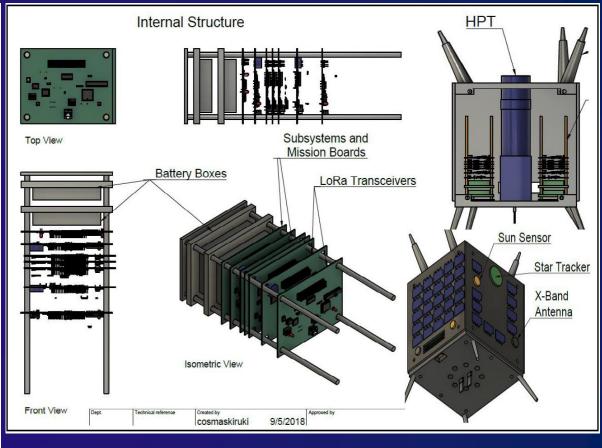
High Precision Telescope (HPT)

- By Tohoku and Hokkaido universities
- Philippines Diwata-1 satellite
- 5 meter spatial resolution

Image: HPT, Junichi Kurihara et. al

- a) HPT on Diwata-1
- b) LandSat 8: 15 meters (panchromatic); 30 meters (visible); 100 meters (thermal)




Key Performance Parameters

- Tracking updates 30 minutes interval
- Flash Floods monitoring 15 minutes update
- Ground Spatial resolution 30 meters

Space Segment

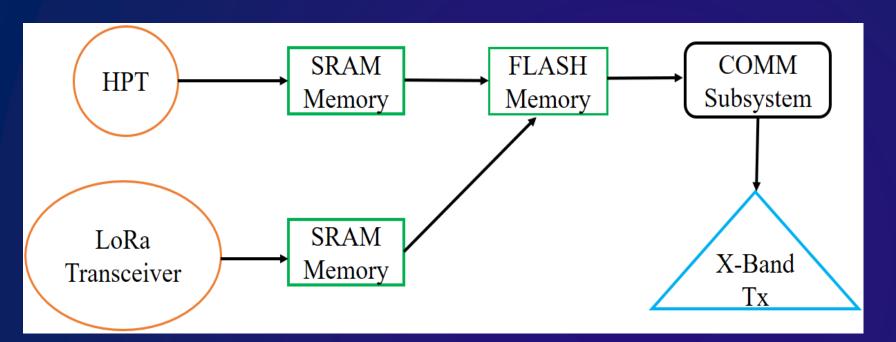
- 50 cm x 50 cm x 50 cm
- HPT- 38 cm \times 16 cm \times 13 cm.

Major Mission Payloads LoRa Transceivers

- ASAL-SAT 4 LoRa Transceivers
- Simultaneous on 8 channel; 6 SFs per channel = 48 ground gateways
- Half Capacity utilized 25 ground gateways simultaneously (100 total)
- 10 byte packet takes about 741 ms Time on Air (TOA)

High Precision Telescope (HPT)

- Field of view of 0.28° by 0.21°
- 2 km x 1.5 km
- Temporary image storage Static Random-Access Memory (SRAM)



<u>Image: HPT, Junichi Kurihara et. a</u>

Store and Forward

Other Subsystems

- ☐ ADCS
 - Orienting HPT for desired location image capture
 - Antenna pointing for ground LoRa network

- **Determination**: Sun sensor (coarse), Star Tracker Camera (fine); GPS (Earth-reference); Gyroscopes, Magnetometer
- **Actuators**: 3 Axis stabilization by Reaction wheels; Magnetorquers

☐ Communication

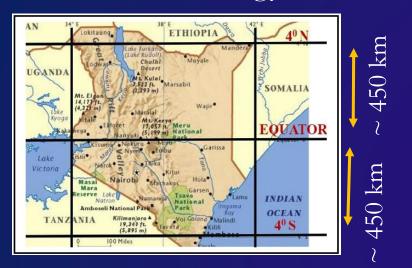
- X- band
 - ≥ 8.3 GHz
 - Imagery telemetry, up to 50 Mbps
- UHF
 - > TT & C

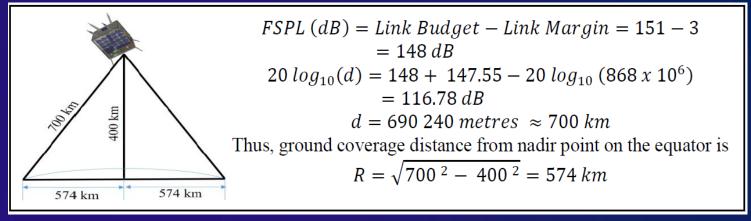
- Endurosat X-band
- 8.4 GHz

Transmitter

• 270 g

Subsystems Power and Mass Budget


No	Device	Mode	Power Consumption	Power Consumption	Mass (g)
			Idle (mW)	Peak (mW)	
1	4 LoRa Transceivers +	RX and	500	3040	200
	Controller	TX			
2	X-Band Transmitter	TX only	270	12000	300
3	UHF (TT&C)	RX	200	200	85
		TX	700	1700	100
4	HPT Imager		100	4000	3000
5	ADCS				
	Reaction Wheels	Idle	180	6000	760
	Star Tracker		100	7000	2200
	Sun Sensor		120	120	15
	GPS Receivers		240	950	47
6	OBC		400	2000	70
7	EPS, Solar Panels and			200	2500
	Batteries				
8	Structure and				4500
	harnesses				
	Total		2810	37210	13777



Orbit/Constellation Description

ASAL-SAT – Technology demonstration

400 km, equatorial orbit – Kenya fully covered

Satellite Constellation

Image: RCMRD ,Kenya Map

Equatorial orbit – 14 revs per day (100 mins)

3 satellites (120°) – revisit time 30 mins

Implementation Plan - Stakeholders

> ASAL-SAT – Kenya Chapter

Kenya Space Agency

Ground Stations

Image: Luigi Broglio Space Centre, Malindi Kenya

• X-Band station with a 6 m long parabola

> ASAL-SAT – Sub Sahara Adoption

> Data Dissemination

GSM/USSD

HQ.

Implementation Plan - Partners

Cost Schedule

Cost Center	Unit Cost (USD)	Total Cost (USD)
20 Kg Satellite Hardware and Assembly (3)	200,000	600,000
Satellite tests and transportation		200,000
Human Resource (Initial 3 years)		800,000
Launch (100 Kg class)		100,000
Operational Costs for 3 Years (after launch)		500,000
Total		2,200,000

Technology Demonstration Partners

Not Equatorial (51.6°)

Equatorial Orbit

- $H \sim 500 \text{ km}$
- $L \sim 3 5 \text{ Yrs}$

