

UNIVERSITY OF TORONTO AEROSPACE TEAM 4925 DUFFERIN STREET | TORONTO, ONTARIO, CANADA | M3H 5T6 WWW.UTAT.CA | CONTACT@UTAT.CA

HERON

An Open Source Microbiology Experiment Platform In Low Earth Orbit

Ali Haydaroglu, Kimberly Ren, Lorna Lan

REDEFINING LIMITS

HERON is a student-funded and built 3U Cubesat investigating the effects of microgravity on the human gut microbiome using a novel, open-source and cost-effective microfluidics platform with the goal of *trailblazing the future* of accessible space biology research.

UNIVERSITY OF TORONTO AEROSPACE TEAM OFFICE OF STRATEGIC PARTNERSHIPS WWW.UTAT.CA | CONTACT@UTAT.CA

Overview

- 1. Mission Objectives & Impact on UN Sustainable Goals
- 2. The Biological Payload
- 3. The Microfluidic and Optical Sensor Experimental Platform
- 4. Key Performance Parameters
- 5. Mechanical Systems
- 6. Electrical Systems
- 7. Concept of Operations
- 8. Orbital Considerations
- 9. Implementation Plan
- 10. Who are we?
- 11. Conclusions

Mission Objective	Impacted UN Sustainable Development Goal
1. Biological Viability demonstrating the validity of our novel experimental platform	
2. Scientific Contribution to our knowledge of the human microbiome in space	
3. Open-Source Documentation available around the world	SUSTAINABLE DEVELOPMENT
4. Education of the next generation of space talent	GCALS
5. Budget of the mission will be below \$50,000 USD	

Mission Objective	Impacted UN Sustainable Development Goal
1. Biological Viability demonstrating the validity of our novel experimental platform	O 6000
2. Scientific Contribution to our knowledge of the human microbiome in space	3 HEALTH
3. Open-Source Documentation available around the world	$-\Lambda_{\Lambda}$
4. Education of the next generation of space talent	
5. Budget of the mission will be below \$50,000 USD	

Mission Objective	Impacted UN Sustainable Development Goal
1. Biological Viability demonstrating the validity of our novel experimental platform	INNOVATION AND
2. Scientific Contribution to our knowledge of the human microbiome in space	9 INFRASTRUCTURE
3. Open-Source Documentation available around the world	010/1
4. Education of the next generation of space talent	11/017
5. Budget of the mission will be below \$50,000 USD	

Mission Objective	Impacted UN Sustainable Development Goal
1. Biological Viability demonstrating the validity of our novel experimental platform	
2. Scientific Contribution to our knowledge of the human microbiome in space	4 EDUCATION
3. Open-Source Documentation available around the world	
4. Education of the next generation of space talent	
5. Budget of the mission will be below \$50,000 USD	

The Biological Payload: Why Immunocompromisation and Space Missions?

1. What happens to the human body in long duration space missions?

- Evidence of adaptive and innate immune system compromisation/weakening
- Bone density decrease, increased cancer risk, social isolation etc.
- Vision problems, nutrition problems, microbiota morphological and genetic changes

2. How can these issues be tackled if we continue to explore beyond Earth?

- Can our current Earth-based medicine and biomedical technologies still function?
- Medicine needs to "evolve" at a sufficient pace to keep up space exploration
- Our pharmacological interventions must adapt to meet the changes to our bodies in extreme microgravity and radiation environment over long periods of time
- This is even more crucial when considering a Mars mission

Reference: https://www.nasa.gov/hrp/bodyinspace

The Biological Payload: Organism of Interest

- Candida albicans
- Dimorphic opportunistic fungal pathogen
- Normal resident of the gut microbiota (BSL2)
- Why? Large eukaryotic genome that has useful natural properties that make it ideal for genetic manipulation

Enhanced Electron Microscopy, image credits

The Biological Payload: Purpose and Objectives

- Engineer C. albicans to express GFP with genes of interest to enable real-time gene expression quantification over a 48-hour period
- Assess the risk of auto-immune and immunosuppressive GI infections for long term space missions

Experiment 1: Track gene expression through fluorescence detection and optical density measurements

Experiment 2: FLC resistance via minimum inhibitory concentration, tracked through optical density measurements.

Payload Microfluidics: The How

- Keep cells and growth media separate until experiment initiation
- 2. Load 9 dilutions of Fluconazole into 18 wells (2 MIC lanes) and growth media into 15 wells
- 3. Localize fluid actuation to chip

Payload Microfluidics

- 2 microfluidic chips: 64mm x
 54mm x 7mm
- 36 total wells
- 5 layers of clear, extruded acrylic per chip, 1 layer PTFE membrane
- Blister packs adhered to the second layer of the chip
- 4X 350 uL blister packs each supplying 4 wells
- 10X 200 uL blister packs each supplying 2 wells

Manufacturing process:

- Laser cut each layer on 0.06" acrylic
- Remove edges & clean
- Use SVG Hot Embosser to thermally bond at 100°C

Payload Microfluidics

Blister Packs

Average Opening Force:

- 200uL blister pack: 30N, 350uL blister pack: 25N
- Total Force Required: 400 N

PTFE Membrane Filter

- Naturally hydrophobic & excellent chemical resistance
- Ideal for venting of gases high to very high flow rate
- Very low protein binding
- Autoclave sterilization acceptable

Payload Instrumentation: Functional Overview

- Light detection sensitivity of ~3 nW/cm² for fluorescence measurements of ~1 pA photocurrents
- Amplifiers for performing optical density (OD) measurements
- Environmental sensors: pressure, temperature, humidity and acceleration sensors
- Heater control for payload bay and temperature measurement
- Stepper motor and special considerations in mechanical system to control the fluid flow

Payload: Mechanical Burst Plate

- Lowers via 2 x 260N linear stepper motors to actuate the top plate
- Applies distributed force to the top of the blister packs, bursting all at the same time
- Remains depressed after bursting to prevent reflowing of liquid back to blister packs

JNIVERSITY OF TORONTO AEROSPACE TEAM OFFICE OF STRATEGIC PARTNERSHIPS VWW.UTAT.CA | CONTACT@UTAT.CA

Payload Instrumentation: Optical Sensor Layout

- Separate LED and Sensor PCBs sandwich the microfluidics chips (modelled after GeneSat-1)
- LEDs illuminate through holes in the PCB for better **path linearity**
- Photodiodes are also mounted through holes in the PCB for easier filter mounting
- Black encapsulation on the back of the photodiodes and 3D printed baffles on the side of LEDs to block stray light

Optical sensor physical layout

Key Performance Parameters

Tagged genes of *C. albicans* must directly relate to measured characteristics, e.g. virulence Scientific repeatability must be ensured by the microfluidics system accurately isolating and actuating experimental fluids

Payload bay must stay at 1 atm, 100% relative humidity for the entire mission, 33±5°C during 48h experiment, 4-40°C before

Optical sensors must be **sensitive to fluorescence on the order of 3 pW/mm²** from the GFP in cells

UNIVERSITY OF TORONTO AEROSPACE TEAM OFFICE OF STRATEGIC PARTNERSHIPS WWW.UTAT.CA | CONTACT@UTAT.CA

Concept of Operations

1 Gene tagging (L-365 to L-120 days): C. albicans strains are engineered to exhibit eGFP when select genes are expressed	2 Assembly and Handoff (L-120 to L): Cells are put to <i>stasis</i> and loaded into the payload bay, satellite is then fully assembled and handed off to the launching party	3 Early Orbit (L to L+14): Detumbling and diagnostics while cells remain in stasis $(4 - 40^{\circ}C)$
4 Experiment Preparation (24h): Payload bay heated to 33°C, optical sensor calibration	5 Experiment (48h): Motor actuated, blister packs popped open, and once-per-30-minute data collection	6 Diagnostics, End of Life: After the experiment, HERON will be used for diagnostics & amateur radio outreach, its orbit will decay within 25 years.

UNIVERSITY OF TORONTO AEROSPACE TEAM OFFICE OF STRATEGIC PARTNERSHIPS WWW.UTAT.CA | CONTACT@UTAT.CA

Mechanical Systems

- **3U Cubesat** with 4 rails along the z-axis contacting the P-POD
- α/ε ratio of external faces controlled with thermoptical tapes at 1.17
- 23 cm high, 7.5 cm diameter octagonal payload bay sealed at 1 atm
- Thermal decoupling between the payload bay and primary structure; total conductance limited to 0.08 W/K based on cold-case steady-state thermal analysis
- Passive attitude control system with magnets
 & hysteresis rods for detumbling

Electrical Systems & Power

- Power requirements dominated by payload heating
 - **1.5W** before experiment (4-40°C)
 - 2.6W during 48h experiment (33±5°C)
- Negative power margin for 48h during experiment, but large batteries (4x5000 mAh) compensate
- Battery longevity not a concern
- 6 solar cells for each long face for generation

Power Budget w/ Experiment OFF

Subsystem	Mode	Instant Consumption (mW)	Time Active (%)	Constant Power Subtotal (mW)	
EPS	On	100) ()	0
	On + heater	300) 100) 30	0
OBC	On	100) 100) 100	0
Comms	RX	200) 95	5 190	0
	RX+TX	2100	0.05	5 10	5
Beacon	On	100) 100) 100	0
Payload	On	100) () (0
	On +				
	heater	1500) 100) 150	0
Deployment*	Antenna	2650) N/A	A 2650	0
	Payload	10000) N/A	1000	0
"Deployment occ	urs once, rig	int atter satellite is laun	chea. It is there	tore discounted from the)

power calculations Consumed Power Generated Power Efficiency MARGIN (mWh) Const. Pwr/orbit (mWh) Const. Pwr/orbit (mWh) 85% 619.4 80% 2295 3643

Power Budget w/ Experiment ON

75%

437.3

Subsystem	Mode	Instant Consumption (mW)	Time Active (%)	Constant Power Subtotal (mW)
EPS	On	100) () 0
	On + heater	300) 100) 300
OBC	On	100) 100) 100
Comms	RX	200) 95	5 190
	RX+TX	2100	0.05	5 105
Beacon	On	100) 100) 100
Payload	On	100) () 0
	On+			
	heater	2600) 100) 2600
Deployment*	Antenna	2650) N/A	A 2650
	Payload	10000) N/A	10000
Deployment occ	urs once, ng	int alter satellite is laun	chea, it is there	nore discounted from the

power calculations Consumed Power Generated Power Efficiency MARGIN (mWh) Const. Pwr/orbit (mWh) Const. Pwr/orbit (mWh) 85% -298.580% -480.6 3395 3643 75% -662.8

Electrical: Data and Link Requirements

Low data size (<100kB), rate (1200bps) and completely autonomous experiment reduce the requirements and complexity of the communications & on-board computer modules.

Data Source Size Per Measurement		Link Budget			
	Cize i ci Measurement	Item	Symbol	Units	o Uplink
C (Optical Sensors)	1152b	Transmit Antenna Gain (net)	G_t	dBi	19
	11020	Equivalent Isotropic Radiated Power (EIRP)	EIRP	dBW	29.5
18 X 240		Space Loss (FSPL)	L_s	dB	140.07
	1506	Propagation & Polarization Loss	L_a	dB	0
i nermistors (IVIF Chips)	duct	Peak Receive Antenna Gain	G_rp	dBi	1
~8 x 12b		Receive Antenna Pointing Loss	L_pr	dB	1
		Receive Antenna Gain (net)	G_r	dBi	0
Pressure Sensor	24b	System Noise Temperature	T_s	К	615
046	2.1~	System Noise	T_sn	dB-K	28.00
240		Receiver Noise Figure	R_nf	dB	3.00
	1.46	Receiver Noise	R_n	К	289.00
emp Sensor (PCB)	14D	Recieved Power	P_r	dBm	-81.1
14b			P_r	dBW	-111
			P_r	W	7.84E-12
Humidity Sensor	14b	Data Rate	R	bps	1,200
	110	Eb/N0	Eb/N0	dB	57.35
140		Carrier-to-Noise Density Ratio	C/N0	dB-Hz	88.14
N 41 1	0.01	Bit Error Rate	BER	•	1.00E-06
IMU	960	Required Eb/N0	Req(Eb/N0)	dB	15
48b		Implementation Loss	ImL	dB	2
100		Margin		dB	40.35

Orbit Selection

- Sun-Synchronous orbit with 550 km altitude, 98.6 inclination is the optimal orbit for HERON given thermal & power constraints.
- SSO is accessible, but has much more favorable conditionals than an ISS orbit:
 - Extremes of the ISS orbit are much harsher
 - SSO affords much more predictable thermal & power generation properties

OF TORONTO AEROSPACE TEAM ATEGIC PARTNERSHIPS CONTACT@UTAT.CA

Sleady-State Orbit Average Temperature Using T-Node Analysis		
	SSO	ISSO
Optimal a/e	1.17	1.09
Hot Case Temperatures	Avg = 33.0°C, Max = 33.3°C	Avg = 29.2°C, Max = 50.1°C
Cold Case Temperatures	Avg = -16.6°C. Min = - 16.8°C	Avg = -19.7°C, Min = - 21.9°C

Power Generation & Consumption of HERON in SSO (above) and ISSO (below)

Implementation Plan

- Our team is pioneering Canada's first fully student-funded satellite launch.
- Several-month long campaign mobilizing the UofT student body to raise a \$400,000 levy fund
 - Charging 40,000 undergrads \$2.77/semester for 2 years, up for renewal in early 2019
- The entirety of the fund is dedicated to development & launch of HERON
- A team of 50+ enthusiastic, talented students in our team working on HERON

 UNIVERSITY OF TORONTO AEROSPACE TEAM
 OFFICE OF STRATEGIC PARTNERSHIPS WWW.UTAT.CA | CONTACT@UTAT.CA The Space Systems Division of the University of Toronto Aerospace Team is seeking a levy on undergraduate student tuition to fund the development and launch of a microbiology research satellite.

DO YOU KNOW HOW HARD IT IS TO GET TO SPACE?

UTAT.CA / VOTE

We need your help to make it happen.

Please pass this on to a friend and recycle after the referendum.

Conclusions

- HERON's contribution to space biology research is beyond the experiment on-board – our open-source experimental platform will make a genuine impact in the way such research is undertaken in the future
- The first mission of its kind designed with the goal of equitable access to space, highlighted by its low cost, open-source documentation and accompanying educational materials

ADDITIONAL INFORMATION

Who are we?

- Space-enthusiastic undergraduate or graduate students from various University of Toronto disciplines: Engineering, Math, Physics, Biology
- We are a united, welcoming and diligent team
- Team Culture: everyone can build a satellite!
- To the stars, with friends!

Payload Biology

Summary "Equations"

- Microgravity (M) + Candida albicans (CA) = CA_M
 - (physically, genetically & pathogenically altered CA as a result of M)
- M + human immune system = low levels of immune cells
- Low levels of immune cells + CA_M = infection and disease!
- An awful combination: weak humans & strong pathogens!

Biological Payload - Background Work by ISS & NASA

- GeneSat-1 demonstrated in situ microsatellite instrumentation
 - (Kitts et al. 2007)
- Microarray analysis of *C. albicans* grown in space
 - (Crabbe et al., 2013)
 - Experiment performed on the International Space Station (ISS)
 - Analyzed gene expression by microarray analysis on Earth
- <u>EcAMSat</u>: Investigating Space Microgravity Effects on Antibiotic Resistance of *E. coli*
- Pharmasat: yeast and drug resistance
- <u>BioSentinel</u>: deep-space 6U satellite to measure long term radiation on double strand breaks in DNA and repair processes
- No real-time studies exist
 - Our goal is to develop a (near) real-time platform

Payload Temperature Contr

Delivering Heat to Experiment:

- Positioning of wells and heaters on microfluidic chips
 - 1. 2 Long side heaters for 28 wells
 - 2. 3 Small side heaters for 6 wells
 - 3. 1 Bottom heater for blister packs
- Temperature acquisition

Additional means of insulation:

• Reflective gold adhesive tape for interior of payload ($\epsilon = 0.2$)

(2)

3

Payload Temperature Control

- Thermostatic heater programming
- 4.86W at room temperature and limited convection

Offset max temp by 1°C		
Time ↑ 30°C [min]	16	
Stabilization [±°C]	0.5	
Gradient across wells	< 1°C, $\frac{dT}{dt}$ < 0	

Payload Instrumentation

PCB Layout

- 3V LDO supplies power for analog side
- Separate analog and digital GND planes connect at a choke point under the LDO
- Guard traces protect amplifier inputs
- No traces or current return paths pass under sensitive amplifiers
- All analog ICs outfitted with 10uF bulk and 0.1uF bypass capacitors
- Capacitor values have been calculated to stabilize transimpedance output

PCB schematic of the current optical sensor PCB prototype

Payload Instrumentation

Amplifier Chain Design

- Total gain ~7.4 billion times with 128x PGA (ideal)
- Practical gain achieved likely lower, although we're on track to return very usable values
- First two stages have a very low typical noise floor: 80 fA/ \sqrt{Hz}
- Gain of the transimpedance amplifier has been lowered from 10 M to 100 K for stability and shifted partially to the second ADPD2210

Overall Design

Overall Design - Assembly

Cross-Section of Structure

Thermal Conductance Limit heat flow between Payload and Bus

Material	Conductivity $\left[\frac{W}{m \cdot K}\right]$	Part
AI 6061-T6	167.00	Structures
PEEK Plastic	0.25	Washers
18-8 SS	16.20	Bolt and Nut

• Target K < 0.06 W/K

Calculated conductance = 0.04 W/K

Method of verification:

• Homogeneous material: effective thermal conductivity $k_{eff} = 4.56 \frac{W}{m \cdot K}$

• Closed system:
$$\dot{Q}_{stack} = \dot{Q}_{water} \rightarrow k_{eff} = -c_w \frac{L}{A} \frac{m}{\Delta t} \frac{\Delta T_{water}}{\Delta T_{stack}}$$

Aerogel Insulation Solution

Minimize effects of radiative heat transfer

• Fully-breathable nanoporous material

Materials	Emissivity (ε)
Gold Mylar	$\varepsilon \sim 0.02 - 0.04$
Aerogel– Cryogel Z Blanket	$\varepsilon^* = 0.042$ $k_{eff} = 0.016 \frac{W}{m \cdot K}$
Kapton Tape	Negligible
Filter	Negligible

- Easy custom fabrication:
 - Conventional hand tools sleeve to minimize seams
 - Controlled Volatility RTV Silicone adhesive $(0.27 \frac{W}{m.K})$
- Attention to corners and solution for caps

Electrical System Overview

38

System Architecture

Implementation: Scheduling

 UTAT's development cycle for HERON Mk II, which started in Fall 2016, is leading up to a January 2020 launch. Many iterations of design, manufacturing testing and have brought us to the final manufacturing & testing phase this winter.

Design Risk and Mitigation Table

Risk	Alternative A	Alternative B
Pressure Leak	Update O-ring positioning	Weld both caps
Blister Packs not fitting	Mechanical fixture for alignment	Other methods to bond, apart form heat, for less warping
Detection of Fluorescence	Continue higher fidelity prototypes	Go back to Genesat sensors, with high dynamic range and low saturation
Chip manufacturing (alignment/collapsing/ distortion)	Mechanical fixture for alignment	Other methods to bond, apart form heat, for less warping
Payload Tolerance	Develop hierarchy of assembly components	Develop mechanical fixtures

