Development of Microsatellite in Monitoring Initial Harmful Algal Bloom (HAB)

Algal Bloom is not something NEW!

"Harmful algal blooms, or HABs, occur when colonies of algae — simple plants that live in the sea and freshwater — grow out of control and produce toxic or harmful effects on people, fish, shellfish, marine mammals and birds. The human illnesses caused by HABs, though rare, can be debilitating or even fatal."

- a) Produces Toxins
- b) Causes economic losses
- c) Contaminates drinking water
- d) Depletes oxygen...

Causes by: Nutrient pollution, warm water condition, changes of water flow...

Reference from: NASA Applied Remote Sensing Training Program

What kind of algae involves?

Cyanophyta (Cyanobacteria / Blue-Green Algae)	Characteristic	Chlorophyta (Green Algae)
Typically 0.2 - 2.0 mm diameter	Cell Size	Typically 10-100 mm diameter
Many Toxic Species	Toxins	None
Many produce Geosmin & MIB	Taste & Odor	Some produce Geosmin & MIB
Binary fission (no meiosis)	Reproduction	Mitosis (meiosis involved)
Surface Blooms with many species	Blooms (Buoyancy)	Absent
Many Are	Nitrogen Fixers	Νο

Reference from: Peroxygen Solutions, Nuisance Algae?

From: THE STRAITS TIMES, 3th OCT 2017

Malaysia Algal Bloom Occurences:

Agricultural and fisheries sectors share of employment and GDP 1996 and 2014

Reference from: World Bank (2017), World Development Indicators

Nitrogen Fertilizer Around the World

Figure 3. Regional and subregional share of world increase/decrease in nitrogen fertilizer consumption, 2014-2018

Reference from: FAO REGIONAL CONFERENCE FOR ASIA AND THE PACIFIC (2018)

Huge Impact? Think of it carefully!

How many people are using **fertilizers** in their agriculture?

How many rivers and lakes in South East Asia and South Asia?

How many people and animals are living and consuming these contaminated water?

How their lives is going to be after consuming those polluted water?

How do we know there is a HAB?

- Using Hyperspectral Imaging to capture the ChI-A and ChI-B concentration anomalies
- Evaluate the water surface temperature (WST)
- Decolouration of water (Biooptical Properties)

Objectives:

Primary Objectives:

To establish a HABs monitoring and detecting system that provides early warning to authorities on Initial Harmful Algal Bloom in South East Asia (SEA).

Secondary Objectives:

- a) To provide *imaging services* for other parties in assisting in the research of environmental issues as well as atmospheric and sea current conditions.
- b) To monitor the effects of prevention and control methods that applied to HABs and other environmental issues.

Concept of Operations:

Nanosatellite Constellation **Deployment: 3** satellites release consecutively at RAAN 60°, 120° and 180°

Deorbit and Mission Ended

OBDH

1,3

TTC/EPS

Onboard operation, spectrum data storage, transmission to ground stations

Subsystems, payload activations. Antenna deployment

Mission Concept of Operation:

Space Segment:

3U CubeSat with Hyperspectral Imaging (HSI) remote sensing.

Key Performance Parameters:

1) Remote Sensing Spatial Resolution

Considerations:

- Spatial Resolution must be less than 30m
- The hyperspectral data must include VNIR (Visible Near Infrared) spectrum range
- Cloud penetration capability at equator regions (Hot, humid and cloudy weather)

Why?

- More details for countries or customers who need the data
- Business Lead Magnet for bands of VNIR and SWIR (mining, topography mapping, red tides ...)
- To reduce pixels overlap (small water body)

Imaging Payload Considerations (VNIR)

- **Vegetation** has a unique spectral signature which enables it to be distinguished readily from other types of land cover in an optical/near-infrared image.
- Algae and other vegetations can be identify by measuring the reflectance of Visible to Near Infrared spectrum data emitted by them.

Chameleon Imager – HSI applications

CHAMELEC	
Spatial resolution (GSD) @ 500 km	9.6 m PAN; 19 m MS; 29m HS
Swath @ 500 km	op io 32 km
Spectral bands	Bayer RGB
	or PAN + 8 Multispectral bands
	or 150 band Hyperspectral
Signal-to-Noise Ratio	>200 PAN, >120 MS, >150 HS
Data format	10-bit or 12-bit
Integrated mass data storage ⁺	Up to 160 Gigabytes
Compression	Raw, lossless and lossy
Data interfaces [†]	LVDS, SPI, I2C, CAN-bus
LVDS output rate	1 - 240 Mbps
Dimensions of imager	2U (200 mm x 94 mm x 94 mm)
CubeSat standard	Compatible with 3U and larger
Power Usage	< 3.5 W (imaging mode)
	< 2.5 W (readout mode)
	5V or 28V* power supply
Mass (incl. electronics)	1.35 kg
Operating temperature	+10°C to +30°C
Survival temperature	-20°C to +70°C
Radiation tolerance (TID)	Tested to 20 krad
[†] Depends on chosen configuration	

Depends on crosen configuration.
Requires optional add-on daughterboard

Brochure from: Chameleon Imager, SPACE Advisory Company

Key Performance Parameters:

2) Coverage

Considerations:

- Rapid revisit at least 3 times per day (orbit selection)
- Limited to latitude North 22 degrees to South 22 degrees
- "NeqO" orbit (Near Equatorial Orbit)

Why?

- Faster data transmission from satellite to ground stations

- Faster warning and verification for authorities
- Prevent data overloads to the microsatellite
- Business Lead Magnet (countries in that region)

Summary of the Microsatellite:

Attitude Determination and Control System(ADCS):

- 3 units of Small CubeWheels

Propulsion:

 2 units of Vacco Micro Propulsion System (0.3U)

OBDH:

- CubeComputer & Mass storage
- Flight module (CubeSat Kit FM430)
- S band transmitter (3.4 Mbps downlink)
- Transceiver (9600 bps for uplink and downlink)
- Deployable Antenna

Power:

- 4 units ISIS 3U fixed solar panels (generating 27.6 W)
- Imaging operation (used 6.60 W)
- Date transmission/ Receive (12.10W)
- Target Pointing (23.60W)

Mission Description: New Implementation in SEA

Near Equatorial Orbit (NeqO)

- Alititude: 600 km
- Inclination: 22 degrees
- Orbital Period: 5801.6 s/ 96.7 mins
- Orbital cycle: 14.89/day
- Constellation: 3 satellites constellation
- RAAN: 60°, 120°, 180°
- 3 5 years mission

Implementation:

Budget Required

Operation	Cost (USD)		Total Cost for	5 years (USD)
HAB-M 3U CubeSat Module	\$	254,700.00	\$	764,100.00
Integration, Testing and Launching	\$	300,000.00	\$	300,000.00
Ground Operations				
Ground Stations Equipments set-up	\$	200,000.00	\$	200,000.00
Project Manager Salary /year	\$	30,000.00	\$	150,000.00
Scientist & Engineers (2 person)/year	\$	48,000.00	\$	240,000.00
Miscellaneous/year	\$	20,000.00	\$	100,000.00
	Total Cost		\$	1,754,100.00

1 year operational cost = USD 350,820.00

Mission Preparation Timeline

					2	0	1	9									2	0	2	0				
Contract Signed	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Conceptual Design																								
Preliminary Design																								
Detail Design																								
Engineering Modeling&Simulation																								
Purchasing and Modeling																								
System Integration																								
Flight Model Test&Evaluation																								
Environmental Test																								
Launch Vehicle Integration																								
Launch																								

Mission Planning Reference: Spaceflight - Schedule and Pricing

Let's us protect the <u>land</u> and <u>fresh</u> <u>water</u> and together we live <u>healthy</u> <u>life!</u>

