

ISOLDE

In-Space Outgassing Laboratory Distant from Earth The 4th Mission Idea Contest For Micro/Nano-satellite Utilization

İstanbul Technical University Istanbul, Turkey Luleå University of Technology Luleå, Sweden

Yiğit Çay, Demet Çilden, Amin Mirzai, Neslihan Gençkal Egemen Aydın, İrem Kırcı

yigitcay.34@gmail.com, dmtcldn@gmail.com, aminmirzae@gmail.com, ngenckal@gmail.com, aydineg@yahoo.com, kircii24@gmail.com

Team Structure

Management scheme of project team

- Prof. Dr. Zerefşan Kaymaz
- Prof. Dr. Alim Rüstem Aslan
- Assoc. Prof. Dr. Cuma Yarım
- Prof. Dr. Cengiz Hacızade
- Assoc. Prof. Dr. T. Berat Karyot
- Istanbul Technical University's Upper Atmosphere & Space Weather Laboratory
- Space Systems Test & Integration Laboratory

Table of Contents

- Introduction
- Mission Objectives
- Concept of Operation
- Key Performance Paramaters
- Satellite Design
- Implementation Plan
- Project Risks

Introduction

- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks

In-Space Outgassing

Laboratory Distant from

October 21, 2016

Introduction

'Outgassing is the release of gasses that dissolved, trapped, frozen or absorbed in materials.'

Ground experiments in vacuum tanks

- Lower vacuum
- Costly

UHV > between 10^{-6} and 10^{-10} Pa XHV > below 10^{-10} Pa

Mission idea of ISOLDE

- Outgassing measurements
- XHV conditions of space

Spacecraft Outgassing (SCHLÄPPI et al.)

Introduction

• Introduction

- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks

ISOLDE's payload

- Measure outgassing rate
- Contaminants from a sample material
 - Copper

Zeolite is also used in the laboratories to understand its effect to the outgassing characterization of the copper sample.

The molecular structure of a zeolite, ZSM-5 Photo courtesy of wikimedia.org

In-Space Outgassing

Laboratory Distant from

Mission Objectives

- Introduction
- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks
- In-Space Outgassing

Laboratory Distant from

- To conduct the standard outgassing measurement processes in the laboratory units with XHV conditions
- 2. To test the contamination reliability when the payload operations are going on
- 3. To measure the effect of gas absorbing material, zeolite
- 4. To provide precise data of a common spacecraft material for improving the prevention techniques of return flux hazards.

- Introduction
- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks

Laboratory Distant from

October 21, 2016

Concept of Operation

• Introduction

- Mission Objectives
- Concept of Operation
- Key Performance
 Paramaters
- Satellite Design
- Implementation Plan
 - Project Risks

In-Space Outgassing

Laboratory Distant from

Earth

October 21, 2016

Key Performance Paramaters

- 1. Attitude control system to provide the three-axis stabilization and to point the spacecraft to sun in order to keep the laboratory units at the same temperature
- 2. Successful heating to 0°C the subsystem carrier segment that is shadowed during all mission
- 3. Achieving the data storage from sensors with 16-bit microcontroller platform
- 4. Successful data transfer of 10 Mbps to the ground station
- 5. Activating thruster successfully for de-orbiting phase

- Introduction
- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks

Laboratory Distant from

- Introduction
- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks

Laboratory Distant from

Subsystems and allocations.

.

- Introduction
- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks

In-Space Outgassing Laboratory Distant from

Earth

Space Segment Overview

4th Mission Idea Concept For Micro/Nanosatellite Utilization – Finalist Presentations @ Varna, Bulgaria

ISOLDE Budgets	%	Mass [kg]	%	Power [W]		
Structure and Mechanisms	10.2	2.2	1.13	2.0		
Thermal Control System	0.0	0.0	0.00	0.0		
Attitude Determination and Control System	8.9	1.7	6.51	11.5		
Power System	32.8	6.1	0.00	0.0		
Cabling	5.3	1.0	0.00	0.0		
Propulsion System	14.6	2.7	3.68	6.5		
Telecommunication System	10.2	1.9	20.66	36.5		
Command and Data Handling	0.7	0.3	0.11	0.2		
Payload	16.7	3.1	67.91	120.0		
Total Dry Mass & Power	19.1 kg 4.1 kg 27.8 kg		56.70 W (w/o payload) - 179.35 W			
Propellant Mass						
Total Dry Mass & Power (Margin Included)						
Maximum	50 kg		179.39 W			

- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks

Laboratory Distant from

Space Segment Overview

1. Attitude Determination and Control System

- 2. Electrical Power System
 - 48 GaAs/Ge solar cells
 - 179 W

- Introduction
- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks

Laboratory Distant from

Space Segment Overview

3. Command and Data Handling

- 29 GB payload data for six days of active mission
- 74 MB engineering data
- Two 16 GB SD Card

4. Operating Modes

- Normal Mode
- Step Mode
- Emergency Mode
- Communication Window Mode
- Recovery Mode

OBC in the courtesy of CubeSatShop

October 21, 2016

Space Segment Overview

5. Propulsion

• For De-orbiting Phase

6. Telecommunication

The Uplink frequencies

2030 MHz (S band)

8400 MHz (X band)

Near Earth Network for Ground

The Downlink frequencies

- Electrolysis of water to generate oxygen and hydrogen propellants to feed its bipropellant thruster
- 3.87 kg Water
- Key Performance
 Paramaters

Introduction

Mission Objectives

Concept of Operation

٠

٠

- Satellite Design
- Implementation Plan
 - Project Risks
- In-Space Outgassing

Laboratory Distant from

٠

٠

٠

•

Network

N	
X band downlink	S band uplink
8.4	2.0
29.7	57.0
25.0	3.6
14.0	5.6
16.5	41.2
-0.8	-3.6
0.6	-28.8
179.1	166.8
1.1	1.1
0.2	0.2
0.1	0.1
23.4	-22.2
52.2	6.0
4.2	1.8
37.3	0.6
289.0	435.0
-24.6	-26.4
63.3	65.8
56.8	46.3
4.3	10.5
3.0	3.0
478.7	42.2
56.8	46.3
2.2	9.0
	X band downlink 8.4 29.7 25.0 14.0 16.5 -0.8 0.6 179.1 1.1 0.2 0.1 23.4 52.2 4.2 37.3 289.0 -24.6 63.3 4.3 3.0 478.7 56.8 2.2

- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan

• Project Risks

In-Space Outgassing

Laboratory Distant from

Space Segment Overview

7. Thermal Control

- Passive control system
 - Hughson Black Paint H322
 - 19°C and 22°C range

Subsystem	Min. Temperature (°C)	Max. Temperature (°C)
Payload	-20	+70
ADCS	-20	+50
Battery(s)	-20	+60
Antenna(s)	-40	+70
Receiver	-20	+50
Transmitter	-40	+50
OBC	-40	+85
Range	-20	+50

Temperature Ranges of ISOLDE

- 34.2 x 49.8 x 24.2 cm
- 27.8 kg
- Aluminum alloy 6061-T6
- Step Motors
- Nichrome burn wire release mechanism

- Introduction
- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks

In-Space Outgassing Laboratory Distant from 4th Mission Idea Concept For Micro/Nanosatellite Utilization – Finalist Presentations @ Varna, Bulgaria

October 21, 2016

Space Segment Overview

9. Orbit/Constellation Description

3D view of the orbit

World map view.

- Sun-synchronous polar orbit
 - Energy generation
 - Easy to put orbit
- 700 km of altitude
 - De-orbit

- 90.4° of RAAN
- 98.18° of inclination

- Introduction
- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks

Laboratory Distant from

Component	Estimated Cost [\$]	Remarks
Equipments	261.375	Including margin
Structure & Mechanism	15.000	
Thermal Control System	1.000	
Attitude Determination and Control System	12.000	
Power System	50.000	
Propulsion System	35.000	
Telecommunication System	35.000	
Command and Data Handling	11.100	
Payload	50.000	
Manufacture	100.000	3 models to manufacture
Tests	100.000	Held in ITU
Personnel	1.010.400	22Stu.x800\$ + 7Prof.x3500\$ for 24m
Operations	50.000	May increase by other GS usage
Utilities	100.000	For back-up utilities
Other	200.000	For unpredictable costs
Total	1.821.775	
Total with Launch	3.821.775	Approximate (Transfer costs inc.)

Project budget of ISOLDE.

- Introduction
- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks

Laboratory Distant from

Earth

ISOLDE Life Cycle		2016			2017				2018	
	3	6	9	12	3	6	9	12	3	6
Proposal of the Idea and Kick-off										
Mission Analysis and Design										
Trade Study										
Conceptual Design Review										
Enhancements										
Manufacturing and Tests										
Amendments										
Check-out Phase										
Assembly and Integration										
Delivery for Launch										
Launch										
Orbit Insertion										
Mission Operations										
De-orbiting Phase										

4th Mission Idea Concept For Micro/Nanosatellite Utilization – Finalist Presentations @ Varna, Bulgaria

October 21, 2016

Project timeline.

- Introduction
- Mission Objectives
- Concept of Operation
 - Key Performance
 Paramaters
 - Satellite Design
- Implementation Plan
 - Project Risks

Laboratory Distant from

Earth

4th Mission Idea Concept For Micro/Nanosatellite Utilization – Finalist Presentations @ Varna, Bulgaria

- 1. Any malfunction of ADCS system can be resulted in telecommunication loss or experiment failure due to lack of power generation.
 - Fault Tolerant Control System
- 2. Any possible leakage from the water tank can be hazardous for the payload electronics and spacecraft hardware.
 - Ground Tests
- 3. X-ray emissions in space are negatively affecting the quality of the mass spectrometry experiments.
 - Data Correction
 - Radiation Studies
- 4. Any launch delay can increase the cost of the project.
 - Another Shuttle

References

- Redhead, P. A. Extreme High Vacuum. CERN. No. OPEN-2000-281 (1999)
- Schläppi, B., Altwegg, K., Balsiger, H., Calmonte, U., Hässig, M., Hofer, L., . . . Mall, U. Characterization of the gaseous spacecraft environment of Rosetta by ROSINA. 3rd AIAA Atmospheric Space Environments Conference, Fluid Dynamics and Co-located Conferences (pp. 1-8). Honolulu: American Institute of Aeronautics and Astronautics, Inc. (2011)
- NASA. Near Earth Network | NASA. Available online at: <u>http://www.nasa.gov/directorates/heo/scan/services/networks/txt_nen.html</u> (2016, March 16)
- Tethers Unlimited. HYDROS[™] Water Electrolysis Thruster: Green Propellant, High-Thrust Propulsion for Orbit-Agile CubeSats. Available online at: <u>http://www.tethers.com/HYDROS.html</u> (accessed March 2016)
- Thurn, A., Huynh, S., Koss, S., Oppenheimer, P., Butcher, S., Schlater, J., and Hagan, P. A Nichrome Burn Wire Release Mechanism for CubeSats. 41st Aerospace Mechanisms Symposium (pp. 1-10). Pasadena, CA: NASA Jet Propulsion Laboratory (2012)
- On board computer. (n.d.). Retrieved January 10, 2016, from CubeSatShop: <u>https://www.cubesatshop.com/product/on-board-computer</u>

Thank You For Listening

Questions?