

CubeSat Constellation for Monitoring and Detection of Bushfires in Australia

Siddharth Doshi, David Lam, Himmat Panag

Bushfires in Australia

Black Saturday Bushfires

Mt Stromlo Fire

physics.anu.edu

Existing Systems

Image Resolution

	Low	Medium	High
Long			(Himawari- 8)
Medium			+
Short	(NOAA)	+	+

Revisit Time

Objectives

Higher spatial resolution

Prevention of exponential growth

Provide more information to firefighting services

Need for Spatial Precision

Need for Spatial Precision

Need for Early Detection Before Exponential Growth

30 minutes

Key Performance Parameters

Better than 100m spatial resolution

30 minute revisit time

Coverage of 300 000 km² of high risk areas

Concept of Operations

Imaging Payload

Sensor

- nBn sensor for mid-wave infrared sensing
- higher resolution than mature sensor technologies (pixel pitch of 12 μm)
- COTS, but needs space environmental testing

Quazir HD Hot Camera Core

Lens

- Wide aperture 200mm IR lens (physical length ~126mm)
- Single focus (as imaging at > twice the hyper-focal distance, light is collimated)

Spatial Resolution (Key Performance Parameter)

	Parameter	Value
Sensor	Pixel pitch	12µm
	Pixel array size	1280*1024
Lens	Focal length	200mm
	Diameter	110mm
Orbit	Altitude	561.24km

Considering the Rayleigh criterion for diffraction limited resolution at 2.9µm gives:

- Ground Sampling Distance (Resolution) 87m
- Swath Size 100 km x 90 km

Multispectral Imaging Option

Other Major Components

ADCS - Hyperion iADCS 100, 3 axis control with 1 degree of accuracy

OBDH - S-band 1Mbps transfer with 64GB storage

Power - Pumpkin Solar Panels (4U fixed, 3U deployable)

- Generation: 22W (average)
- Usage: 10W during downlink, 12W during imaging

Propulsion - Busek pulsed plasma thruster

Orbit Description

Altitude: 561.25km

A possible inclination configuration chosen to cover the east coast of Australia

Revisit Time and Coverage

Key high risk target zones near metropolitan and semi-urban areas

Total prioritised imaging area of 300,000km²

Revisit Time (Key Performance Parameter)

- 1. Define coverage areas.
- 2. Estimate area each satellite will sweep on each pass.
- 3. Assume 25% of imaging area is redundant.

48 satellites yields revisit time of 18 min

Propulsion System

Pulsed plasma thruster with 140 grams of PTFE fuel gives total $\Delta V = 170$ m/s.

Altitude maintenance - requires $\Delta V \sim 3m/s/yr$

De-orbit - ΔV of 120m/s required to reach mean altitude of 250km.

Deorbit

Deorbiting from 560km altitude with apogee centred burn arcs.

Trip time = 30 days

Implementation

Project Management AUSTRALIAN CENTRE FOR SPACE ENGINEERING RESEARCH

Ground Stations

Public Information

Life Cycle Cost

Parameter	Cost (AUD \$)
Personnel and management (over initial 2 years)	2,500,000
Ground station equipment	250,000
COTS components and build (48 CubeSats)	6,000,000
Launch (300kg class)	8,000,000
Total	20,000,000
Life Cycle Cost (per year, after initial period)	2,000,000

Mission Schedule

	2017									2018													2019					
	J	F	M	A	М	J	J	Α	S	0	N	D	J	F	М	Α	м	J	J		A	S (D	N	D	J	F	М
Advanced Studies																												
Design																												
Mission Planning																												
Spacecraft Operations																												
Payload Operations																												
Navigation & Orbit Control																												
Mission Control																												
Data Delivery																												
Data Processing																												
Archiving and Maintaining Database																												
Development																												
Activity Planning & Development																												
Software Development																												
Acquisition of COTS Components																												
Assembly																												
Space Segment																					Τ							
Ground Segment																												
Integration and Testing																												
System Engineering & Integration and Test																												
Launch																												
Operations																												
Operations																												
Software Maintenance																												
Computer and Communication Support																												

http://earthobservatory.nasa.gov/IOTD/view.php?id=86268

Appendix Slide - Revisit Time

1. Define coverage areas

2. Estimate area each satellite will sweep on each pass (A_{ij}) .

3.
$$T_{rep} = \frac{60 \times 24 \times A_{req}}{R_f \sum_{i=1}^{N} \sum_{j=1}^{p_i} A_{ij}},$$

where p_i to be the number of passes the ith satellite makes over the imaging area and R_f is the redundancy factor, a measure of how much imaged data area is not important.