

Microsatellites observing atmospheric and space electricity for the science of serious natural disasters: Challenge to their mitigations

<u>Shoho Togo</u>, Kikuko Miyata*, <u>Hidetoshi Nitta, Shusaku Takahashi</u>, Kohei Tanaka†, Tomohiro Okada, Yuko Suzuki, Yoshiaki Orihara, <u>Masashi Kamogawa</u>

Tokyo Gakugei University, * Nagoya University, †Sokendai (Japan)

Introduction

Earthquake

This photo is taken by Leggi il Firenzepost

Lightning

Mission 3: Study of lightningrelated phenomena for lightning prediction.

Global warming

Mission 2:

Tsunami

Investigation of tsunami

ionospheric hole for

early warning system

Mission 4: Study of global lightning for global warming understanding

写真提供:2002年元旦アルゼンチンにで 果林浩撮影

「全国地球温暖化防止活動推進センターホームページより (http://www.jccca.org/)」

Plan A: Single satellite operation (Low cost plan)

Plan B: 3 satellites constellation (Integrated plan)

EQ mission

Mission 1 : Verification of earthquake ionospheric precursor for practical earthquake prediction (EQ mission)

No reliable and frequently repeatable precursor for a long time.

EQ mission

Pre-seismic decrease of VLF wave intensity at nighttime

Nemec et al., Geophs. Res. Lett. (2008) Kamogawa et al. (in preparation)

EQ missio

Mission system

Electric temperature probe(ETP)

Electric Field Probe (EFP)

	Attitude control	Attitude determination
	accuracy	accuracy
DC	1 deg.	7 deg.
AC	5 deg.	37 deg.

Plan B Early phase: Investigation of Latitudinal Distribution

EQ mission

Plan B

Late phase : Feasibility of Real-time Identification : Robust Verification of Phenomenon

Distance among the satellites > radius of precursor(500km)

Mission 2:

Investigation of tsunami ionospheric hole for early warning system (Tsunami mission)

2011.3.11 Tohoku Earthquake (Japan)

We discovered **Tsunami Ionospheric Hole (TIH)**

Kakinami & Kamogawa et al., Geophs. Res. Lett. (2012)

Tsunami Mission

GPS stations are not uniformly distributed

GPS stations are not far from the coast

Observation

Plan B: Constellation Observation

Verification feasibility for satellite-based tsunami early warning system from real time monitoring

Lightning mission

Mission 3: Study of lightning-related phenomena for lightning prediction. (Lightning mission)

Photo given by Uchinada town Local government

We will find new lightning prediction technique

Plan A: Verifying statistical correlation between gamma ray

and lightning.

<Detector>
Csl scintillator detectors
radiation from earth and galaxy

VLF /ELF booms Lightening wave form

Color Camera movie of luminous event Pb shield

Gamma-ray Radiation Camera Visible region

Ionosphere

Exited Ground Lightning Observation Network

Plan B

Early phase: Time of Arrival analysis (TOA)

Mission 4 Study of global lightning for global warming understanding (Global warming mission)

After JCCCA

Global Warming mission Global Electric Circuit (GEC)

lonosphere

Transient luminous events (TLEs)

Global warming mission

Gigantic-Jet at summit of Mt. Fuji, Japan

Ionosphere

TLE emit TLEs emit 10 times stronger ELF wave than Schumann resonances

We investigate how much TLE event influence on the Schumann resonance intensity for global warming study.

Global warming mission

Plan A : Schumann resonance and TLE observation

Global warming mission

Plan A : Schumann resonance and TLE observation

Plan B Early phase : 3D structure imaging

- Constructing 3D structure
- Investigating discharge current for GEC study

Operation Sequence

Mass and Power Distribution

	Components	Qty.	Mass[kg]	Power[W]
EPS	Solar Panel	1	0.6	
	Power control Unit	1	1.5	1.5
	BAT	1	1.5	
COM	Antenna	2	0.1	N/A
	Transmitter and Receiver	1	0.74	TX ON: 4.6
				TX OFF: 1
DH	On-board Computer	1	0.8	5
ADCS	Geomagnetic Acquisition Sensor	1	0.14	0.1
	NSAS	6	0.3	0.9
	MEMS Gyro	1	0.2	0.3
	IR Earth Sensor	1	0.03	0.13
	Magnetic Torquer	3	1.2	1.5
	Reaction Wheel	3	3.3	2.1
Mission	EFP	3	0.3	0.3
	ETP	1	0.1	0.2
	CSI	2	9.4	0.8
	OPC	1	0.02	1
	GTO	1	0.2	1.5
STR	HEATER	1	0.1	1
	STRUCTURE + Harness	1	16.97	N/A
	BOOM (Long)	1	1.1	N/A
	BOOM (Short)	2	1.4	N/A
TOTAL			40	20.9

First natural frequency of longer boom is estimated to be around 3 Hz.

Attitude Determination and Control

Mission requirement for electric field measurement

	determination	Control	
DC	1	7	
AC	5	37	(degree)

- Attitude determination with
 - 6-sun sensors
 - Earth sensor (or star sensor)
 - 3-axes geomagnetic aspect sensor
 - 3-axes mems gyro
- Zero-momentum control with 3 axis RWs
- Unloading with 3-axes magnetic torquers
- Avoidance of the boom natural frequency

- [1] http://www.axelspace.com [2] Kaplan. C., LEO Satellites: Attitude Determination and Control Components ; Some Linear Attitude Control Techniques [3] http://www.tierra.co.jp/ [4] http://www.sensonor.com/
- [5] https://makesat.com/products/reaction-wheel

Communication

S-band

- Up: 4 kbps, PCM-PSK-PM
- Down: 64-300 kbps, BPSK

Operation

-30 🗄

- High frequency -> Japan & Norway GS
- Low frequency -> Japan GS
- Expected communication data amount Only Japan GS
 - 1.7MB/Day @ 4kbps
 - 100 MB/Day @ 256 kbps ⇔ Requirement 70 MB /D

2 patch antenna

-> omni antenna pattern" for emergency

http://www.dst.co.jp/

	di
Norway	Japan
14.7	5.3
3.0	0.9
1	lorway 4.7 5.0

Downlink Link Margin @ 256kbps

• Larger than 0 dB for worst case

Uplink Link Margin

Larger than 10 dB for worst case

Enough Link Margin, Enough data communication amount Power

Generating power

De-orbiting Analysis

DOM-1500

Effective Area : total surface area /4

De-orbiting can be achieved within 20 years

Cost Estimate and Funding

Team and Funding Sources:

Several university groups

Competitive scientific research funding

e.g. Grant-in-Aid for Scientific

Research (KAKENHI)

International university group

Several national institute in Japan

Space Agency: JAXA

Plan B

National project

10 years after our mission

Lightning

14

Oct 2016 02.

Time Step: 10.00 sec

(E

Concluding remarks

- Natural disasters often produce signals of atmospheric and space electricity before and after the event.
- Electricity monitoring is applicable to other natural disasters such as land sliding, volcano eruption, and forest fire.
- Space-based monitoring of such signals contributes to mitigate the disaster.
- On-board electromagnetic measurement is small, simple and matured technology and low cost.
- This project will show "innovative science" using microsatellites.

Thank you for your attention!!

Disturbance Estimation

-> 0.14Nms/rev

Gravity gradient	0.16×10 ⁻⁵	Nm
Solar Radiation Pressure	0.0022×10 ⁻⁵	Nm
Residual magnetism	2.3×10 ⁻⁵	Nm
Aerodynamic	0.011×10 ⁻⁵	Nm

Mission data

boom

[1] http://www.i-qps.net/i-qps/service.html

[2] Yokomatsu et al; Deployment Experiments on Stiffened Tri-axial Tubular CFRP Boom for Boom-Membrane Integrated Space Structures

Mass and Power Distribution

	Components	Qty.	Mass[kg]	Power[W]
EPS	Solar Panel	1	0.6	
	Power control Unit	1	1.5	1.5
	BAT	1	1.5	
COM	Antenna	2	0.1	N/A
	Transmitter and Receiver	1	0.74	TX ON: 4.6
				TX OFF: 1
DH	On-board Computer	1	0.8	5
ADCS	Geomagnetic Acquisition Sensor	1	0.14	0.1
	NSAS	6	0.3	0.9
	MEMS Gyro	1	0.2	0.3
	IR Earth Sensor	1	0.03	0.13
	Magnetic Torquer	3	1.2	1.5
	Reaction Wheel	3	3.3	2.1
Misson	EFP	3	0.3	0.3
	ETP	1	0.1	0.2
	CSI	2	9.4	0.8
	OPC	1	0.02	1
	GTO	1	0.2	1.5
STR	HEATER	1	0.1	1
	STRUCTURE + Harness	1	16.97	N/A
	BOOM (Long)	1	1.1	N/A
	BOOM (Short)	2	1.4	N/A
TOTAL			40	20.9

Simulation Results of Attitude Control incl. determination error

Communication

- S-band system ٠
 - Up: 4 kbps, PCM-PSK-PM •
 - Down: 64-300 kbps, BPSK
- Japan and Norway GS

for emergency

- Expected communication data amount
 - 7MB/Day @ 4kbps •
 - 530 MB/Day @ 300kbps

2 patch antenna

Downlink Link Margin @ 256kbps

	Unit	min	max
Transmit EIRP	dBW	-7.13	-1.63
Transmitter Power	W	0.300	0.300
Internal Loss	dB	-3.9	-3.9
Antenna Gain	dBi	2	7.5
Free propagation range	km	2485.20	666.00
Atmospheric absorption	dB	-0.00305	-0.00305
loss			
Rain fade	dB	-0.08	-0.00557
Receiving G/T	dB/K	6.54	6.54
Antenna Gain	dBi	35.58	35.58
Internal Loss	dB	-2.50	-2.50
System noise temp.	K	450	450
Receiving C/N0	dBHz	60.54	77.55
Required Eb/N0(BER : 10 ⁻⁵)	dB	6	6
Symbol Rate	kbps	256	256
Required C/N0	dBHz	-60.08	-60.08
Hardware loss	dB	-1.5	-1.5
Link Margin	dB	0.20	17.21

Access Summary

	Norway	Japan
Access Frequency [num./Day]	14.7	5.3
Averaged Access Duration [hour/Day]	3.0	0.9

Uplink Link Margin

	Unit	min	max	Command Margin	min	max	
Transmitter Power	W	10	10	Required Eb/No	9.303	9.303	dB
Internal Loss	dB	-0.9	-0.9	Modulation Loss	11.14	11.14	dB
Antenna Gain	dBi	36.2	36.2	Demodulation	2.4	2.4	dB
				Loss			
Transmit EIRP	dBW	45.3	45.3	Coding Gain	2.498	2.498	dB
Free propagation range	km	2485.	666	Required C/No	56.36	56.36	dBHz
		2					
Free propagation loss	dB	-166.8	-	Link Margin	11.3	22.78	dB
			155.33		3		
Atmospheric absorption	dB	-0.003	-0.003				
loss							
Rain fade	dB	-0.079	-0.079	Carrier Margin	min	max	
Antenna Gain	dBi	-10	-10	Required S/N	10.00	10.00	dB
Internal Loss	dB	-0.90	-0.90	Modulation Loss	2.325	2.325	dB

Enough Link Margin, Enough data communication

Received C/N0

[1]

67.70 79.13

dBHz

[1] Http://www.dst.co

Access Summary

	Norway	Japan
Access Frequency	14.7	5.3
[num./Day]		
Averaged Access	3.0	0.9
Duration [hour/Day]		

Expected communication data amount

• 7MB/Day @ 4kbps

• 530 MB/Day @ 300kbps

Downlink Link Margin @ 256kbps

	Unit	min	max
Transmit EIRP	dBW	-7.13	-1.63
Transmitter Power	W	0.300	0.300
Internal Loss	dB	-3.9	-3.9
Antenna Gain	dBi	2	7.5
Free propagation	km	2485.20	666.00
range			
Atmospheric	dB	-0.00305	-0.00305
absorption loss			
Rain fade	dB	-0.08	-0.00557
Receiving G/T	dB/K	6.54	6.54
Antenna Gain	dBi	35.58	35.58
Internal Loss	dB	-2.50	-2.50
System noise temp.	K	450	450
Receiving C/N0	dBHz	60.54	77.55
Required Eb/N0(BER	dB	6	6
: 10 ⁻⁵)			
Symbol Rate	kbps	256	256
Required C/N0	dBHz	-60.08	-60.08
Hardware loss	dB	-1.5	-1.5
Link Margin	dB	0.20	17.21

Uplink Link Margin

	Unit	min	max	Command Margin	min	max	
Transmitter Power	W	10	10	Required Eb/No	9.303	9.303	dB
Internal Loss	dB	-0.9	-0.9	Modulation Loss	11.14	11.14	dB
Antenna Gain	dBi	36.2	36.2	Demodulation Loss	2.4	2.4	dB
Transmit EIRP	dBW	45.3	45.3	Coding Gain	2.498	2.498	dB
Free propagation range	km	2485.2	666	Required C/No	56.36	56.36	dB Hz
Free propagation loss	dB	-166.8	-155.33	Link Margin	11.33	22.78	dB
Atmospheric absorption loss	dB	-0.003	-0.003				
Rain fade	dB	-0.079	-0.079	Carrier Margin	min	max	
Antenna Gain	dBi	-10	-10	Required S/N	10.00	10.00	dB
Internal Loss	dB	-0.90	-0.90	Modulation Loss	2.325	2.325	dB
System noise temp.	K	700	700	Required C/No	42.32	42.32	dB
Received G/T	dB/K	-39.35	-39.35	Link Margin	25.37	36.81	dB
Received C/N0	dBHz	67.70	79.13				

Mass		40 kg
Volume		300 x 300 x 300 mm
Maximum Power Supply		34 W, Body mount (7S2P / 7S3P) (Solar cells are covered with SnO ₂)
Power storage		5.8 Ah (Max DOD:15.7 %)
Lifetime		2 year
ADCS	Attitude Determination Accuracy	1° NSAS(6), GAS(1), MEMS Gyro(1), IR Earth Sensor(1)
	Attitude Control Accuracy	7° RW(3), MTQ(3)
COM		S-band Up: 4 kbps, PCM-PSK-PM Down: 64-300 kbps, BPSK
Ground Station		Norway (Svalbard), Japan

	Plan A	Plan B
Total	4,000,000	30,000,000
Mission Payloads		
Satellite Bus		
IA&T		
Ground Systems		
Project Management & SE		

Funding Sources

Grant-in-Aid for Scientific

Research (KAKENHI)

- Up to 300 M JPY expected
- Funded Tohoku University's SPRITE-SAT

Official Development Assistance (ODA)

- First case: 40 B JPY to Vietnam
- Especially for countries participating in UNISEC's CanSat Leadership Training Program

Proposal will be submitted to JSPS (KAKENHI) this month by Prof. Kamogawa for next fiscal year funding.

TLE map and Event number

TGFs map and Event number

How to estimate TGF and TLE events

estimation of detect number using orbit calculation

	nood dional	(
	Ground	
	observation	
Lightnin g	WWLLN	
Earthqua ke 🔨	USGS	-

JEM-GLIMS

MISSION area and orbital area. http://www.nasa.gov/mission_pages/station/research/experiments /121.html

http://hesperia.gsfc.nasa.gov/rhe

- Satellite have only visible data then
- → We estimated whole events by rate of satellite detectable area and orbital area.

Estimation of whole data amount

Visible area : S1

$$S1 = \pi r^2 = 3.14 * 279 * 279$$

 $= 2.44 \times 10^{5}$ [km $S2 = 2 * \int_{0}^{(90-38)^{\circ}} 2\pi R \sin\theta * R d\theta$
 $= 4\pi R^2 [1 - \cos\theta]_{0}^{52^{\circ}}$
 $= 4^{*}3.14 * 6371 * 6371 * (1-0.61)$
 $= 1.98 \times 10^{8}$ [km^2]

How to make TGF standard model 1) Download data set as follows.

http://scipp.ucsc.edu/~dsmith/tgflib_public/data/

2) Separate events in bin

a) Space : 6 ° (longitudinal and latitudinal)

b) Season : Summer (5 ~ 10) and Winter (11 ~ 4)

c) Time zone : Day (LT 6 \sim 18) and Night (LT 0 \sim 6, 18 \sim 24)

