

NetCubeSat and SDR Based Communication System for Climate Change Understanding

<u>Omar Ben Bahri¹</u>, omar.benbahri@fsm.rnu.tn Nissen Lazreg¹,Nader Gallah¹, Amani Chaouch¹ & Pr. Kamel Besbes^{1,2}

¹Monastir University, Microelectronic and Instrumentation LAB, Tunisia ²Center for research on Microelectronics and Nanotechnology, Tunisia

October 21, 2016

Idea

Over 90% of Scientists Agree Global Warming is a Reality

GlobalWarming Facts#1 Interesting-facts.com

Monitor and Control Climate Changes ... Fight against air pollution and global warming

October 21, 2016

Introduction

Introduction

Factors causes Global Warming

Natural causes

Anthropogenic causes

- Natural calamities
- Greenhouse effect
- Sunspots ...

- Deforestation
- Rapid industrialization
- Increased automibile use ...

(CO2, CH4, N2O and PM ...)

"....global warming is very likely man-made (or anthropogenic)."

Mission Objectives

Integrating the nano satellite technology in air monitoring routine for climate protection purpose

Fight against air pollution in order to limit the temperature rising
Provide a system for a real time air quality monitoring
Lower the barriers to transmit data in the region without infrastructure in real time

STEP 1:

Provide a permanent coverage for a real time monitoring, <u>especially for</u> <u>the areas in the countries under development (eg. North Africa)</u>

Why?

Concept of Operations System Architecture

module

October 21, 2016

Concept of Operations Space Segment

- Satellite structure Overview
 - $> 1U \text{ structure} : 10 \ge 10 \ge 10 \text{ cm}^3$
 - \succ Mass ~ 1 Kg

- > COM : SDR module (VHF \checkmark UHF \checkmark)
 - S-band : ISL
- > Attitude Determination and Control System (Sun sensor, gyro and magnetometer sensors, magnetorquers)
- Launcher
 - Poly-PicoSatellite Orbital Deployer (P-POD)

October 21, 2016

Concept of Operations Ground Segment

• The ground station connected with the climate administrator server through Internet

- •Downlink mission data : UHF / 437 MHz 9600 bps
- \bullet Uplink commands : VHF / 145 MHz 1200 bps
- Visibility ~ 10 min
- Receive the monitoring data each orbital period

Key performance parameters Sensors

- Low cost sensor networks are an exciting idea with great potential
- These instruments can be configured to log real time data on gas, particulate, noise and weather parameters
- Data can be transmitted wirelessly
- Ease of integration

Key performance parameters SDR

• A wireless communication device where the transmitter and receiver operations are changed or modified by software alone without making any changes to the hardware

ZYNQ

Key performance parameters SDR

OBJECTIVES

• **Reduce** the development costs:

A single Hardware Platform for several standards and systems

• Reduce the equipment costs:

Use as much as possible 'Off the Shelf' Components

• Additional benefits:

Reduction of size and weight of equipment

Radio waveform can be changed in operation through software

control

Provide high data rate which allows the download of mission data directly upon request

Key performance parameters COM

• COM Link budget

Orbit & Constellation

	Sat-1	Sat-2	Sat-3	Sat-4	Sat-5	Sat-6	Sat-7	Sat-8	Sat-9
a (Km)	600	600	600	600	600	600	600	600	600
e	0	0	0	0	0	0	0	0	0
I (°)	36	36	36	36	36	36	36	36	36
Ω (°)	0	0	72	72	144	144	216	216	288
TA (°)	0	180	0	180	0	180	0	180	0

Implementation plan

µEi-Lab : Monastir University

- Air monitoring system
- ADCS system
- Orbit and Constellation management
- Ground station

Microélectronique et instrumentation MESRST:03/UR/13-04

Conceptual design	Feb 2016-Dec 2016			
Engineering model	Jan 2017			
Flight model	2018			
Constellation	2019			
Constellation launch	2020			

Expected partners:

REGIM-Lab: Sfax University

- Satellite's data processing algorithms
- Satellite bus design
- VSEE-Lab : Sousse University
 - Communication network Management

Conclusion

□ If global warming continues to worsen, and anthropogenic activity continues to exacerbate our fragile environments we will most certainly see a threat in our life security

□ The mission provides a solution to monitor and control climate changes in order to mitigate the global warming

We probably can not stop climate change, but we can slow it down!

