

# Lunar Orbit CubeSat Injector - LOCI Mission Idea Contest IV

### **Presenters:** Reuben Jikeme Umunna, Rodrigo Cordova Alarcon

#### **Team Members:**

Necmi Cihan Örger, Mariela Rojas Quesada, Rigoberto Reyes Morales, Syahrim Azhan



## LOCI – the Idea

- It is a **great challenge to independently get CubeSats to the Moon** on their own.
- LOCI aims at **injecting four 2U CubeSats in Moon's orbit** to overcome inherent propulsion drawbacks.
- **Provide considerable shielding** from prolonged radiation exposure.
- Deployment of *multiple* CubeSats for *multiple* tasks beyond LEO.
- Performance matching of CubeSats to larger satellites at lower cost and shorter development time.
- Formation flying will increase the potential functionality of CubeSats.



## Introduction

- CubeSats limited partly by inability to maneuver themselves.
- Risk mitigation against Launch vehicle and Primary payload.
- ISRO, ISC. Kosmotras & Eurockot, SpaceX and JAMSS offer CubeSat launches however huge backlog still exists.





# Why is the Moon our target?





# CWbySate Limitatione SatsDreepd&place

Kyushu Institute of Technology





# **Mission Objectives**

- To **deploy 3<sup>rd</sup> party four 2U-Cubesats** into different orbits whose orbital ephemeris will be compatible with the Nanosatellite lunar orbit insertion strategy.
- To develop a satellite structure that **ensures functional integrity of four 2U-Cubesats**.
- To **perform measurements** of plasma density, temperature potential around lunar orbit, & density variation of submicron dust grains.
- To **encourage collaboration** with international organizations for the achievement of mission objectives towards lunar mission



# **Concept of Operation**

Kyushu Insti<u>tute of Technology</u>





# **Key Performance Parameters**

- **Successful deployment of four 2U CubeSat** into their requested orbit with a position accuracy of 10m.
- The **measurement of solar wind & magnetospheric plasma** properties with Langmuir probe & 3-axis magnetic field (< 2 nT).
- The measurements of submicron dust grains (<1  $\mu$ m) will be performed by a Lunar Optical Scattering Dust Instrument.
- Adaptive exposure capability to **analyze lunar exosphere and surface composition** with approximately 6nm spectral resolution.





# Secondary Mission – Payload Operations

| Operation                                               | Outcome                                                                   | Exploration | Science |
|---------------------------------------------------------|---------------------------------------------------------------------------|-------------|---------|
| 1. CubeSat Separation and Lunar Approach Imaging        | Visual evidence of the mission success                                    | ✓           |         |
| 2. Lunar Dust and Plasma Measurements                   | The relation of upstream plasma flow and high<br>altitudes dust variation | ~           | ~       |
| 3. Lunar Exosphere and Surface Composition Measurements | The composition of lunar surface and exospheric dust                      | ~           | ~       |





https://www.cubesatshop.com/product/argus-1000-infrared-spectrometer/



# 1. Thrust firing at perigee GTO – raise apogee.

- 2. Thrust firing at apogee. Lunar captinized exjected or at 310,000 km and 90,000 km relative to Allen 1 Earth and Allen the 552 da
- 3. Thruster burns stabilizes the Lunar orbit.
- 4. Circularize and decrease orbit to 100 km altitude.

# Orbit Transfers







# **Propulsion System**

- Propulsion system is required to deliver 4600m/s.
- Wet mass of LOCI is  $\approx$ 50kg
- Constant thrust of 0.004N.
- BIT-7 Ion thrusters was selected
- Available total thrust power of 360Watts
- $I_{sp}$  of up to 3500s
- Max. Available thrust 0.011N.
- LOCI wet/dry mass 1.07



# **Electrical Power System**

Antenna (top)

Antenna (top)

Kyutech

• 9 Lithium batteries connected in parallel With a total capacity of 30Ah @ 31.6 V.

Solar cells effective area

- Triple junction solar cells mounted on the body and deployable panels.
- Effective solar panel area is 16,260 cm<sup>2</sup>

**MODES OF OPERATION AND CRITICAL SUBSYSTEMS** Deployment Transfer orbit mode (AOCS, Thruster, Comm, Thermal, C&DH) Nominal Power [W] 256 Aximum Power [W] 480 **CubeSat** release mode (AOCS, Comm, Thermal, Camera, C&DH) Nominal Power |W| 72 Maximum Power [W] 110 Secondary mission (AOCS, Comm, Thermal, Payload, C&DH) Nominal Power [W] 56 Maximum Power [W] 120 **Electrical Power System** 950 @ 32V Battery Capacity Wh Solar cells power IW 630



## Attitude & Orbit Control System

 Kyushu Institute of Technology

 SS x 5

 ST
 FOG

 RW x 4
 Pointing accuracy:

 PPT x 8

 • High accurate attitude control is required.





**Control modes** 



# **Communication Subsystem**

• The communication system is a commercial off-the-shelf Iris V2 CubeSat Deep Space Transponder developed by the NASA's Jet Propulsion Laboratory JPL.

- X-band frequencies operable with NASA's DSN
- One patch array Medium Gain Antenna (MGA)
  - Requires pointing
- Two low gain omni-directional antennas (LGA)
  - Mounted in opposite directions for communication with the Earth stations during the early transfer phase and when the MGA is not Earth pointing.



LGA — Single Tx & Rx patches on 10x10 cm face



*Image source:* Iris V2 CubeSat Deep Space Transponder datasheet. Retrieved March 1, 2016 from <u>deepspace.jpl.nasa.gov</u>



MGA — 4x4 Tx patch array

| Communication System Specification |            |  |  |
|------------------------------------|------------|--|--|
| Uplink Frequency                   | 7.2 GHz    |  |  |
| Downlink Frequency                 | 8.4 GHz    |  |  |
| Variable Downlink Data<br>Rate     | 1k-512kbps |  |  |



# ..... More Subsystems

Command & Data Handling

- Command and data handling (C & DH) consist of a single board SCS750 radiation hardened with heritage.
- Threat Response Processing architecture to increase error free processing.
- Serial communication based on Low Voltage Differential Signaling.

### Thermal Module

- Active thermal control to ensure strict temperature compliance.
- External surface & protruding components will be covered with MLI blankets
- Relative positions of components, their sizes, geometry, and orientation will be given adequate consideration.



## Implementation plan

### **LOCI Project**





## Implementation plan

### **LOCI Project budget**





## Implementation plan

**LOCI Project** 

**Main Risks** 

Availability of launchers

Availability of a DNS

Communication limitations for orbit determination

AOCS loss of precision and orbit maneuvers limitation

Loss of solar panels due to debris or unexpected perturbation



## **ch** On behalf of LOCI team members,



## Thank you!