

TwinCube Proposal for Tethered Supported Plasma Measurement 3-Unit CubeSat

<u>Tomasz Szewczyk</u>¹, Tomasz Barciński², Tomasz Rybus¹, Łukasz Wiśniewski¹, Agata Białek¹, Marcin Krzewski¹

¹Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland ²West Pomeranian University of Technology, Szczecin, Poland

3rd Mission Idea Contest 2014

- 1. Diagnostics of plasma
- 2. Technical description of TwinCube
- 3. Plasma and tether experiment
- 4. Implementation plan, challenges and feasibility

Introduction

Diagnostics of Plasma

Investigation of space plasma can lead to:

- Receiving more reliable positioning and navigation services
- Improvement of communication satellite services
- Protection against effects of space radiation on electronic devices

Passive measurements of electro-magnetic emissions in plasma are one of the ways to investigate the state of Earth's environment.

Introduction

Multipoint Measurements - Tethered System

Multipoint measurements allow to investigate spatial and temporal variability of plasma. Diagnostics at multiscales (time/space) is crucial to understand evolution of whole system.

Examples:

Cluster satellites (ESA, 2000)

CROSS SCALES (ESA, Proposal)

Using tethered system with CubeSats for multipoint measurements has advantage of:

EART

- Lower cost of the mission (i.e. no formation maintaining)
- Possibility to investigate new areas (i.e. lower parts of ionosphere)

Introduction Mission Objectives

TwinCube mission objectives:

- 1. Perform two-point measurements of electromagnetic small scale plasma turbulences.
- 2. Simulate and verify dynamics of two-satellite system and learn how to control its spin and oscillations.
- 3. Develop miniaturized lock&release mechanism and reliable tether winding/unwiding mechanism.

Additional objectives:

- Introduce students to philosophy of space projects
- Develop and increase TRL of certain sub-systems

Satellite's Subsystem

UHF/VHF Communication System On-Board Computer Attitude Determination and Control System Electrical Power System S-Band Communication System Plasma Experiment Board

Tether Experiment (1 km long non-conductive tether) Lock and Release Mechanism

- UHF/VHF Communication System
- **On-Board Computer**
- Attitude Determination and Control System
 Electrical Power System
- Plasma Experiment Board

Size: 100 x 100 x 340.5 mm

TwinCube Budgets

Mass [g]

70

245

180

146

100

70

259

166

346

250

50

50

50

150 196

2328

Sub-satellite A (2U)

COMM UHF/VHF/S-Band

PLASMA Experiment Antenna

Tether Electronics/Mechanics

Total Sub-Satellite A

Separation Mechanism

Screws & Assembly

OBD&OBDH

COMM Antennas

PLASMA Experiment

ADCS Components

EPS

Camera

Harness

Tether Spool

2U Structure

Walls (7 Walls)

Mass budget falls under 4kg defined in CubeSat Design Specification. www.CubeSat.org

Power budget is positive considering time-sharing.

Sub-Sat. A: avg. energy income: <u>3.38W</u>

Sub-Sat. B: avg. energy income: <u>1.45W</u>

	Subsystem	Minimum [W]	Plasma	S-Band	Tether
			Measurement [W]	Transfer [W]	Operations [W]
Sub-Sat. A	OBC	0.3	0.3	0.3	0.3
	ADCS	0.25	0.7	0.7	0.7
	COMM UHF/VHF	0.9	0.9	0.9	0.9
	COMM S-Band	0	0	6	0
	PLASMA Experiment	0	2	0	0
	TETHER OPERATIONS	0	0	0	1
	Total	1.45	3.9	7.9	2.9
b-Sat. B	OBC	0.3	0.3	-	-
	ADCS	0.25	0.25	-	-
	COMM UHF/VHF	0.9	0.9	-	-
	PLASMA Experiment	0	2	-	-
n S	Total	1.45	3.45	-	_

TwinCube Image: Comparison of the CubeSat Detumbling after Antenna Initial spin Unlock of the Sub-Satellites Detumbling after Antenna Initial spin Unlock of the Sub-Satellites

Unwinding of the tether

Commencement of plasma experiment

Commencement of tether experiment

Lock&Release Failure One point two axis plasma measurements

TwinCube

Risk Assessment

Tether Brakedown Two independent plasma measurements

One Sub-Satellite Failure One point plasma measurements, possibility of full tether experiment

Other potential risks:

- 1 km tether may cause collision avoid SSO
- Chance of tangling the tether stability of deployment is crucial

Plasma Experiment Instrument

Architecture based on design of many spaceborne analyzers:

- E-Field dipole antenna with preamplifier
- Analog Front-End with low-pass filters amplifiers and ADC converter
- Digital Processing Unit (FFT Processor)

Innovative plasma antenna:

- One meter boom antenna
- Steady slow deployment, no kick-off
- Ultra light and compact construction (45 grams, 25x45x25mm)

CBK

TwinCube

Tether Experiment

Tether Mechanism:

- Tether spool
- Motor
- Self-locking drive
- Tether eyelet
- Kick-off spring

The spool will contain 1 km of tether. Dyneema wire is considered.

Lock&Release Mechanism

(PW-Sat payload developed in SRC PAS):

- Heat resistors (primary & backup)
- Dyneema wire
- Strip spring

Bartosz Kędziora (SRC PAS/PW-WUT)

Tethered System Dynamics Simulations

B

Tethered system stability simulation set-up:

- Chosen orbit: 1400 x 300 km (PW-Sat orbit)
- 1 km tether
- Sub-Satellite alignment parallel to orbit plane
- Kick-off velocity induced by springs (0.5 m/s)

Implementation Plan

Mission phases arranged to fit into 4 year plan.

3-year development phase 1-year in-orbit phase

B

Availability of infrastructure used to develop instruments for various missions.

clean room/mechanical workshop/vacuum chambers/laminar flow cabinet

Ground station can be provided by our partners (UHF/VHF/S-Band).

Nicolaus Copernicus Astronomical Center

Nicolaus Copernicus University

Photo: S.Krawczyk

CBK

TwinCube

Feasibility & Technical Challanges

Technical feasibility:

- Ultralight antenna has already high TRL
- Good experience with lock & release mechanisms
- Experience with system dynamics simulation & control
- 'Full sized' analyzers successfully flown and operational

Awareness of technical challenges important for mission outcome:

- Reliable tether mechanism implemented on CubeSat
- Simulation and control issues of tethered system
- Miniaturization of all sub-systems to fit into 3U CubeSat

TwinCube Thank you for your attention!

Tomasz Barciński – barcin@zut.edu.pl Agata Białek – aprzepiorka@cbk.waw.pl Marcin Krzewski – mkrzewski@cbk.waw.pl Tomasz Rybus – trybus@cbk.waw.pl <u>Tomasz Szewczyk – tszewczyk@cbk.waw.pl</u> Łukasz Wiśniewski – lwisniewski@cbk.waw.pl

Acknowledgements

'WIN

CUBF

Space Research Centre PAS – Partial sponsorship of the travel expenses Hanna Rothkaehl – Plasma consultations Former team members: Jerzy Grygorczuk, Tomasz Kuciński, Jakub Lisowski, Marek Morawski, Rafał Przybyła, Roman Wawrzaszek Michał Miszkurka – Design of the logo